【題目】已知的圓心為,的圓心為,一動(dòng)圓與圓內(nèi)切,與圓外切.

(1)求動(dòng)圓圓心的軌跡的方程;

(2)過(guò)點(diǎn)的直線交曲線兩點(diǎn),交直線于點(diǎn),是否存在實(shí)數(shù),使得成立?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) ;(2) 存在,2.

【解析】

1)利用動(dòng)圓與圓內(nèi)切,與圓外切可得動(dòng)圓圓心滿足的幾何性質(zhì),再根據(jù)橢圓的定義可得的軌跡方程.

2)設(shè)的方程為,,則,聯(lián)立直線方程和橢圓方程,消去后利用韋達(dá)定理化簡(jiǎn)前者可得的值.

(1)設(shè)動(dòng)圓圓心,設(shè)動(dòng)圓的半徑為,由題意有

,,消得到:,

故軌跡的方程為:,它是橢圓.

(2)由己知得,由題知直線的斜率存在,設(shè)其方程為,,則.

等價(jià)于

即證明成立,

也即.

聯(lián)立方程,消去得:

由韋達(dá)定理得

代入①可得

所以存在實(shí)數(shù)滿足題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題恒成立;命題方程表示雙曲線.

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校實(shí)行選科走班制度,張毅同學(xué)的選擇是地理、生物、政治這三科,且生物在層班級(jí).該校周一上午選科走班的課程安排如下表所示,張毅選擇三個(gè)科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法的種數(shù)為( )

第一節(jié)

第二節(jié)

第三節(jié)

第四節(jié)

地理1班

化學(xué)層3班

地理2班

化學(xué)層4班

生物層1班

化學(xué)層2班

生物層2班

歷史層1班

物理層1班

生物層3班

物理層2班

生物層4班

物理層2班

生物層1班

物理層1班

物理層4班

政治1班

物理A層3班

政治2班

政治3班

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】首項(xiàng)為O的無(wú)窮數(shù)列同時(shí)滿足下面兩個(gè)條件:

;②

(1)請(qǐng)直接寫出的所有可能值;

(2)記,若對(duì)任意成立,求的通項(xiàng)公式;

(3)對(duì)于給定的正整數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,直線)與橢圓交于兩點(diǎn)(點(diǎn)軸的上方).

1)若,求的面積;

2)是否存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)分別與兩個(gè)定點(diǎn)的連線的斜率之積為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)過(guò)點(diǎn)的直線與軌跡交于,兩點(diǎn),判斷直線與以線段為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是半正多面體(圖1.半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),試判斷零點(diǎn)的個(gè)數(shù);

(Ⅲ)當(dāng)時(shí),若對(duì),都有)成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

一個(gè)盒子中裝有4張卡片,每張卡片上寫有1個(gè)數(shù)字,數(shù)字分別是1、2、3、4.現(xiàn)從盒子中隨機(jī)抽取卡片.

(1)若一次抽取3張卡片,求3張卡片上數(shù)字之和大于7的概率;

(2)若第一次抽1張卡片,放回后再抽取1張卡片,求兩次抽取中至少一次抽到數(shù)字3的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案