【題目】把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表.
1
2 4
3 5 7
6 8 10 12
9 11 13 15 17
14 16 18 20 22 24
設(shè)是位于這個三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個數(shù),如.若,則__________.
【答案】81
【解析】
根據(jù)題干所給的數(shù)據(jù)得到所有奇數(shù)都在奇數(shù)行,所有偶數(shù)都在偶數(shù)行,是偶數(shù),所以它位于偶數(shù)行,可得到前n行共有n(n+1)個偶數(shù),得,是第個偶數(shù),通過估算得到位于第偶數(shù)行,計算出前31偶數(shù)行的偶數(shù)的個數(shù),進而得到腳碼之和.
從所給的部分數(shù)表可看出,所有奇數(shù)都在奇數(shù)行,所有偶數(shù)都在偶數(shù)行.
是偶數(shù),所以它位于偶數(shù)行,將奇數(shù)除外,
前n行偶數(shù)共有個,
由得,所以是第個偶數(shù),
因為,
所以位于第偶數(shù)行,即第行,,
前31行偶數(shù)共有個偶數(shù),
所以第31偶數(shù)行的最后一個數(shù)為
第32偶數(shù)行的第一個數(shù)為1986,是第個數(shù),
即.所以.
故答案為:81.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題,其中正確命題的個數(shù)是______個.
①線段在平面內(nèi),則直線不在平面內(nèi);②兩平面有一個公共點,則一定有無數(shù)個公共點;③三條平行直線共面;④空間三點確定一個平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=,;
(1)討論的單調(diào)性;
(2)若不等式≥在(0,1)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,焦距為,直線過橢圓的左焦點.
(1)求橢圓的標準方程;
(2)若直線與軸交于點是橢圓上的兩個動點,的平分線在軸上,.試判斷直線是否過定點,若過定點,求出定點坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點,并且內(nèi)切于定圓..
(1)求動圓圓心的軌跡方程;
(2)若上存在兩個點,(1)中曲線上有兩個點,并且三點共線,三點共線,,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進行調(diào)查,在高三的全體1000名學(xué)生中隨機抽取了100名學(xué)生的體檢表,并得到如圖的頻率分布直方圖.
(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學(xué)生進行了調(diào)查,得到右表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認為視力與學(xué)習(xí)成績有關(guān)系?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括:①贍養(yǎng)老人費用,②子女教育費用,③繼續(xù)教育費用,④大病醫(yī)療費用等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元,②子女教育費用:每個子女每月扣除1000元,新的個稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 一級 | 二級 | 三級 |
每月應(yīng)納稅所得額元(含稅) | |||
稅率 | 3 | 10 | 20 |
現(xiàn)有李某月收入為18000元,膝下有一名子女在讀高三,需贍養(yǎng)老人,除此之外無其它專項附加扣除,則他該月應(yīng)交納的個稅金額為( )
A.1800B.1000C.790D.560
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為平行四邊形,,為中點,
(1)求證:平面;
(2)若是正三角形,且.
(Ⅰ)當(dāng)點在線段上什么位置時,有平面 ?
(Ⅱ)在(Ⅰ)的條件下,點在線段上什么位置時,有平面平面?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com