已知:圓x2+y2=1過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩焦點,與橢圓有且僅有兩個公共點:直線y=kx+m與圓x2+y2=1相切,與橢圓
x2
a2
+
y2
b2
=1
相交于A,B兩點記λ=
OA
OB
,且
2
3
≤λ≤
3
4

(Ⅰ)求橢圓的方程;
(Ⅱ)求k的取值范圍;
(Ⅲ)求△OAB的面積S的取值范圍.
解;(Ⅰ)由題意知,橢圓的焦距2c=2∴c=1
又∵圓x2+y2=1與橢圓有且僅有兩個公共點,∴b=1,∴a=
2

∴圓的方程為
x2
2
+y2=1

(Ⅱ)∵直線y=kx+m與圓x2+y2=1相切,∴原點O到直線的距離
|m|
1+k2
=1,即m2=k2+1
把直線y=kx+m代入橢圓
x2
2
+y2=1
,可得(1+2k2)x2+4kmx+2m2-2=0
設A(x1,y1),B(x1,y2),則
x1+x2=-
4km
2k2+1
x1x2=
2(m2-1)
2k2+1
 

λ=
OA
OB
=x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2
=(1+k2
2(m2-1)
2k2+1
-
4k2m2
2k2+1
+m2
2
3
≤λ≤
3
4
,∴
2
3
k2 +1
2k2+1
3
4
,解得,
1
2
≤k2≤1
∴k的取值范圍是[-1,-
2
2
]∪[
2
2
,1];
(Ⅲ)|AB|2=(x1-x22+(y1-y22=(1+k2)(x1-x22
=(1+k2)[(-
4km
2k2+1
)
2
-4
2(m2-1)
2k2+1
]=(1+k2)[
16k2(k2+1)
(2k2+1)2
-
8k2
2k2+1
]
=(1+k2
8k2
(2k2+1)2
=2-
2
(2k2+1)2

S△OAB2=
1
4
|AB|2×1=
1
4
2-
2
(2k2+1)2

1
2
≤k2≤1,∴
2
9
2
(2k2+1)2
1
2

3
2
≤2-
2
(2k2+1)2
16
9
,∴
3
8
1
4
(2-
2
(2k2+1)2
)≤
4
9

3
8
≤S△OAB2=≤
4
9

6
4
≤S△OAB
2
3

∴△OAB的面積S的取值范圍為[
6
4
,
2
3
]
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩圓x2+y2-10x-10y=0,x2+y2+6x-2y-40=0,
求(1)它們的公共弦所在直線的方程;(2)公共弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩圓x2+y2=9和(x-2)2+(y-1)2=16相交于A,B兩點,則直線AB的方程是
2x+y+1=0
2x+y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩圓x2+y2-10x-10y=0和x2+y2+6x+2y-40=0,則兩圓的位置關系是
相交
相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•德陽三模)已知離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點M(
6
,1)

(1)求橢圓C的方程;
(2)已知與圓x2+y2=
8
3
相切的直線l與橢圓C相交于不同兩點A、B,O為坐標原點,求
OA
OB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩圓x2+y2=1和x2+y2-6x-8y+9=0,那么這兩個圓的位置關系是
 

查看答案和解析>>

同步練習冊答案