18.直線(xiàn)l過(guò)點(diǎn)(1,0)且與曲線(xiàn)y=-$\frac{1}{{e}^{x}}$相切,設(shè)其傾斜角為α,則α=(  )
A.30°B.60°C.45°D.135°

分析 設(shè)出切點(diǎn)坐標(biāo),求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義求出切線(xiàn)的斜率,由點(diǎn)斜式求出切線(xiàn)方程,代入點(diǎn)(1,0),解方程即可得到結(jié)論.

解答 解:∵y=-$\frac{1}{{e}^{x}}$,
∴函數(shù)的導(dǎo)數(shù)為y′=$\frac{1}{{e}^{x}}$,
設(shè)切點(diǎn)坐標(biāo)為(x0,-$\frac{1}{{e}^{{x}_{0}}}$),
∴切線(xiàn)方程為y+$\frac{1}{{e}^{{x}_{0}}}$=$\frac{1}{{e}^{{x}_{0}}}$(x-x0),
∵切線(xiàn)l過(guò)點(diǎn)(1,0),
∴$\frac{1}{{e}^{{x}_{0}}}$=$\frac{1}{{e}^{{x}_{0}}}$(1-x0),
解得x0=0,
∴$\frac{1}{{e}^{{x}_{0}}}$=1=tanα,
∴α=45°,
故選C.

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的幾何意義,考查直線(xiàn)方程的形式,求函數(shù)的導(dǎo)數(shù)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,已知直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為ρ=$\frac{p}{1-cosθ}$(p>0)
(1)寫(xiě)出直線(xiàn)l的極坐標(biāo)方程和曲線(xiàn)C的直角坐標(biāo)方程;
(2)若直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.函數(shù)f(x)=6cos2$\frac{ωx}{2}$+2$\sqrt{3}$sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$-3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求函數(shù)f(x)的值域及ω的值;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{π}{8}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[-$\frac{π}{2}$,0]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如表數(shù)據(jù):
單價(jià)x(元)88.28.48.68.89
銷(xiāo)量y(件)908483m7568
根據(jù)最小二乘法建立的回歸直線(xiàn)方程為$\widehaty=-20x+250$,
(1)試求表格中m的值;
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)仍然服從建立的回歸方程,且該產(chǎn)品的成本是5元/件,為使工廠(chǎng)獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷(xiāo)售收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0
(1)求角B的大。
(2)若b=$\frac{1}{2}$,求△ABC的周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.復(fù)數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1.1]}\\{\frac{1}{x},x∈(1,+∞)}\end{array}\right.$,則$\int_0^2{f(x)}$dx=$\frac{π}{4}$+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知非零向量$\overrightarrow{AB},\overrightarrow{AC}$滿(mǎn)足$(\frac{{\overrightarrow{AB}}}{{|\overrightarrow{AB}|cosB}}+\frac{{\overrightarrow{AC}}}{{|\overrightarrow{AC}|cosC}})•\overrightarrow{BC}=\overrightarrow{AB}•\overrightarrow{AC}$,則△ABC為(  )
A.等腰三角形B.銳角三角形C.鈍角三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且$a=bcosC+\frac{{\sqrt{3}}}{3}csinB$.,
(1)求B;
(2)若b=2,求ac的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=x2+2x+a.若g(x)=$\frac{1}{{e}^{x}}$,對(duì)任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f(x1)≤g(x2)成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{\sqrt{e}}{e}$-8]B.[$\frac{\sqrt{e}}{e}$-8,+∞)C.[$\sqrt{2}$,e)D.(-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案