商場(chǎng)人流量被定義為每分鐘通入口的人數(shù),五一某商場(chǎng)的人流量滿足函數(shù)F(t)=50+4sin
t
2
(t≥0),則在下列哪個(gè)時(shí)間段內(nèi)人流量是增加的(  )
A、[0,5]
B、[5,10]
C、[10,15]
D、[15,20]
考點(diǎn):正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)條件求出函數(shù)的遞增區(qū)間即可得到結(jié)論.
解答: 解:∵F(t)=50+4sin
t
2
(t≥0),
∴由2kπ-
π
2
t
2
≤2kπ+
π
2
,k∈Z.
得4kπ-π≤t≤4kπ+π,k∈Z.
∵t≥0,
∴當(dāng)k=0時(shí),遞增區(qū)間為[0,π],
當(dāng)k=1時(shí),遞增區(qū)間為[3π,5π],
∵[10,15]⊆[3π,5π],
∴此時(shí)函數(shù)單調(diào)遞增,
故選:C.
點(diǎn)評(píng):本題主要考查正弦函數(shù)的單調(diào)性的應(yīng)用,要求熟練掌握三角函數(shù)的圖象和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x=acosφ
y=bsinφ
(a>b>0),參數(shù)φ的范圍是(0≤φ<2π)的兩個(gè)焦點(diǎn)為F1、F2,以F1F2為邊作正三角形,若橢圓恰好平分正三角形的另兩條邊,且|F1F2|=4,則a等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上的線段l及點(diǎn)P,在l上任取一點(diǎn)Q,線段PQ長(zhǎng)度的最小值稱為點(diǎn)P到線段l的距離,記作d(P,l).設(shè)l是長(zhǎng)為2的線段,點(diǎn)集D={P|d(P,l)≤1}所表示圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
9
+
y2
4
=1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,點(diǎn)P在橢圓上,則
PF1
PF2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x=x0處可導(dǎo)的( 。
A、必要條件
B、充分條件
C、充分必要條件
D、既非充分條件又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)點(diǎn)(1,2)的直線交圓x2+y2=16于A,B兩點(diǎn),當(dāng)丨AB丨取得最小值時(shí),直線AB的方程是( 。
A、x+2y-5=0
B、2x+y-4=0
C、x-2y+2=0
D、2x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C的參數(shù)方程為
x=a+2cosθ 
y=a2+2sinθ
(θ為參數(shù)),設(shè)圓心C的軌跡方程為曲線M,若斜率為2的直線L與曲線M相切,且被圓C截得的弦長(zhǎng)為
4
5
5
,則a的可能取值的集合是( 。
A、{1,3}
B、{-1,-3}
C、{-1,3}
D、{1,-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
b
a
a2-x2
的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

稱子集A⊆M={1,2,3,4,5,6,7,8,9,10,11}是“好子集“,它有下述性質(zhì):若2k∈A,則2k-1∈A且2k+1∈A,(k∈Z)(空集是好子集),問(wèn):M中有多少個(gè)包含有2個(gè)偶數(shù)的好子集?

查看答案和解析>>

同步練習(xí)冊(cè)答案