已知數(shù)列{an}的前n項和Sn和通項an滿足Sn=
q
q-1
(an-1)
(q是常數(shù)且q>0,q≠1,).
(1)求數(shù)列{an}的通項公式;
(2)當q=
1
3
時,試證明a1+a2+…+an
1
2
;
(3)設函數(shù)f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),是否存在正整數(shù)m,使
1
b1
+
1
b2
+…+
1
bn
m
3
對任意n∈N*都成立?若存在,求出m的值,若不存在,說明理由.
(1)當n≥2時,an=Sn-Sn-1=
q
q-1
(an-1)-
q
q-1
(an-1-1)(2分)
?
an
an-1
=q
(2分)
又由S1=a1=
q
q-1
(a1-1)得a1=q(3分)
∴數(shù)列an是首項a1=q、公比為q的等比數(shù)列,∴an=q•qn-1=qn(5分)
(2)a1+a2+an=
1
3
[1-(
1
3
)
n
]
1-
1
3
(7分)
=
1
2
[1-(
1
3
)n]<
1
2
(9分)

(3)bn=logqa1+logqa2+logqan=logq(a1a2an)=logqq1+2+n=
n(n+1)
2
(9分)
1
b1
+
1
b2
++
1
bn
=2(1-
1
2
+
1
2
-
1
3
+
1
n
-
1
n+1
)
=2(1-
1
n+1
)
(11分)
2(1-
1
n+1
)≥
m
3
,即m≤6(1-
1
n+1
)

∵n=1時[6(1-
1
n+1
)]min=3
,
∴m≤3(14分)
∵m是正整數(shù),
∴m的值為1,2,3.(16分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案