對于曲線C∶=1,給出下面四個命題:
①由線C不可能表示橢圓;
②當1<k<4時,曲線C表示橢圓;
③若曲線C表示雙曲線,則k<1或k>4;
④若曲線C表示焦點在x軸上的橢圓,則1<k<
其中所有正確命題的序號為________.
科目:高中數(shù)學 來源:浙江省蒼南縣求知中學2008-2009學年高二下學期第一次月考數(shù)學試題 題型:022
對于曲線C∶=1,給出下面四個命題:
①曲線C不可能表示橢圓;
②當1<k<4時,曲線C表示橢圓;
③若曲線C表示雙曲線,則k<1或k>4;
④若曲線C表示焦點在x軸上的橢圓,則1<k<
其中所有正確命題的序號為________.(把所有正確命題的序號都填在橫線上)
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省嘉興市第一中學2011-2012學年高二下學期摸底試卷數(shù)學理科試題 題型:044
已知函數(shù)f(x)=ax+lnx,a∈R
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x0,y0),且x1<x0<x2,使得曲線在點Q處的切線l∥P1P2,則稱l為弦P1P2的伴隨切線.特別地,當x0=λx1+(1-λ)x2(0<λ<1)時,又稱l為P1P2的λ-伴隨切線.
(ⅰ)求證:曲線y=f(x)的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有-伴隨切線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(福建卷) 題型:013
對于具有相同定義域D的函數(shù)f(x)和g(x),若存在函數(shù)h(x)=kx+b(k,b為常數(shù)),對任給的正數(shù)m,存在相應(yīng)的x0∈D,使得當x∈D且x>x0時,總有則稱直線l:y=kx+b為曲線y=f(x)與y=g(x)的“分漸近線”.給出定義域均為D={x|x>1}的四組函數(shù)如下:
①f(x)=x2,g(x)=;
②f(x)=10-x+2,g(x)=;
③f(x)=,g(x)=;
④f(x)=,g(x)=2(x-1-e-x)
其中,曲線y=f(x)與y=g(x)存在“分漸近線”的是
①④
②③
②④
③④
查看答案和解析>>
科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(福建卷) 題型:044
(1)已知函數(shù)f(x)=x3=x,其圖像記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1)處的切線交于另一點P2(x2,f(x2)曲線C與其在點P2處的切線交于另一點P3(x3f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則為定值:
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com