對于曲線C∶=1,給出下面四個命題:

①由線C不可能表示橢圓;

②當1<k<4時,曲線C表示橢圓;

③若曲線C表示雙曲線,則k<1或k>4;

④若曲線C表示焦點在x軸上的橢圓,則1<k<

其中所有正確命題的序號為________.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:浙江省蒼南縣求知中學2008-2009學年高二下學期第一次月考數(shù)學試題 題型:022

對于曲線C∶=1,給出下面四個命題:

①曲線C不可能表示橢圓;

②當1<k<4時,曲線C表示橢圓;

③若曲線C表示雙曲線,則k<1或k>4;

④若曲線C表示焦點在x軸上的橢圓,則1<k<

其中所有正確命題的序號為________.(把所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省嘉興市第一中學2011-2012學年高二下學期摸底試卷數(shù)學理科試題 題型:044

已知函數(shù)f(x)=ax+lnx,a∈R

(Ⅰ)求函數(shù)f(x)的極值;

(Ⅱ)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x0,y0),且x1<x0<x2,使得曲線在點Q處的切線l∥P1P2,則稱l為弦P1P2的伴隨切線.特別地,當x0=λx1+(1-λ)x2(0<λ<1)時,又稱l為P1P2λ-伴隨切線

(ⅰ)求證:曲線y=f(x)的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;

(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有-伴隨切線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(福建卷) 題型:013

對于具有相同定義域D的函數(shù)f(x)和g(x),若存在函數(shù)h(x)=kxb(k,b為常數(shù)),對任給的正數(shù)m,存在相應(yīng)的x0D,使得當x∈Dxx0時,總有則稱直線l:ykxb為曲線yf(x)與yg(x)的“分漸近線”.給出定義域均為D={x|x>1}的四組函數(shù)如下:

f(x)=x2,g(x)=

f(x)=10-x+2,g(x)=;

③f(x)=,g(x)=;

④f(x)=,g(x)=2(x-1-e-x)

其中,曲線yf(x)與yg(x)存在“分漸近線”的是

[  ]
A.

①④

B.

②③

C.

②④

D.

③④

查看答案和解析>>

科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(福建卷) 題型:044

(1)已知函數(shù)f(x)=x3=x,其圖像記為曲線C.

(i)求函數(shù)f(x)的單調(diào)區(qū)間;

(ii)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1)處的切線交于另一點P2(x2,f(x2)曲線C與其在點P2處的切線交于另一點P3(x3f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則為定值:

(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

同步練習冊答案