已知橢圓的一個焦點為F(0,1),離心率,則橢圓的標準方程為(      ).
A.B.
C.D.
D

試題分析:由題意得,橢圓的焦點在軸上,標準方程為,且,,即橢圓的標準方程為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的離心率為,其左焦點到點的距離為
(1) 求橢圓的標準方程;
(2) 若直線與橢圓相交于兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓G:過點,,C、D在該橢圓上,直線CD過原點O,且在線段AB的右下側.
(1)求橢圓G的方程;
(2)求四邊形ABCD 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:)的左焦點為,離心率為.
(1)求橢圓C的標準方程;
(2)設O為坐標原點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.當四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設m∈R,在平面直角坐標系中,已知向量
a
=(mx,y+1)
,向量
b
=(x,y-1)
,
a
b
,動點M(x,y)的軌跡為E.求軌跡E的方程,并說明該方程所表示曲線的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,P是拋物線C:y=
1
2
x2上一點,直線l過點P且與拋物線C交于另一點Q.
(Ⅰ)若直線l與過點P的切線垂直,求線段PQ中點M的軌跡方程;
(Ⅱ)若直線l不過原點且與x軸交于點S,與y軸交于點T,試求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點F1(-1,0),F(xiàn)2(1,0),動點G滿足|GF1|+|GF2|=2
2

(Ⅰ)求動點G的軌跡Ω的方程;
(Ⅱ)已知過點F2且與x軸不垂直的直線l交(Ⅰ)中的軌跡Ω于P、Q兩點.在線段OF2上是否存在點M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點A(1,0),B (2,0) .動點M滿足
(1)求點M的軌跡C;
(2)若過點B的直線l(斜率不等于零)與(1)中的軌跡C交于不同的兩點E、F
(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的左、右頂點分別是A,B,左、右焦點分別是F1,F(xiàn)2.若成等比數(shù)列,則此橢圓的離心率為________.(離心率)

查看答案和解析>>

同步練習冊答案