9.已知向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a=({1,\sqrt{3}}),|{\overrightarrow b}|=1$,且$\overrightarrow a+λ\overrightarrow b=\overrightarrow 0$,則λ=±2.

分析 由題意和向量的坐標運算求出$\overrightarrow$的坐標,由向量模的坐標運算列出方程求出λ的值.

解答 解:因為$\overrightarrow{a}=(1,\sqrt{3})$,$\overrightarrow{a}+λ\overrightarrow=\overrightarrow{0}$,
所以$\overrightarrow=-\frac{1}{λ}\overrightarrow{a}$=$-\frac{1}{λ}(1,\sqrt{3})$=$(-\frac{1}{λ},-\frac{\sqrt{3}}{λ})$,
又$|\overrightarrow|=1$,則$(-\frac{1}{λ})^{2}+(\frac{\sqrt{3}}{λ})^{2}=1$,
解得λ=±2,
故答案為:±2.

點評 本題考查了平面向量的坐標運算,以及向量模的坐標運算,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.拋物線y2=2px(p>0)的焦點為F,已知點A,B為拋物線上的兩個動點,且滿足∠AFB=90°,過弦AB的中點M作拋物線準線的垂線MN,垂足為N,則$\frac{{|{\overrightarrow{MN}}|}}{{|{\overrightarrow{AB}}|}}$的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax2+4x-1.
(1)當a=1時,對任意x1,x2∈R,且x1≠x2,試比較f($\frac{{x}_{1}+{x}_{2}}{2}$)與$\frac{f({x}_{1})+f({x}_{2})}{2}$的大小;
(2)對于給定的正實數(shù)a,有一個最小的負數(shù)g(a),使得x∈[g(a),0]時,-3≤f(x)≤3都成立,則當a為何值時,g(a)最小,并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.將某選手的9個得分去掉一個最高分,去掉一個最低分,7個剩余分數(shù)的平均分為91,現(xiàn)場作的9個得分的莖葉圖,后來有一個數(shù)據(jù)模糊,無法辨認,在圖中以x表示,則x為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex(ax2+bx+c)的導(dǎo)函數(shù)y=f′(x)的兩個零點為-3和0.(其中e=2.71828…)
(Ⅰ)當a>0時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)的極小值為-e3,求f(x)在區(qū)間[-5,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合M={x|x2-x-2<0},N={x|x≤k},若M∩N=M,則k的取值范圍是( 。
A.(-∞,2]B.[-1,+∞)C.(-1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x2+2x+a,g(x)=lnx-2x,如果存在${x_1}∈[{\frac{1}{2},2}]$,使得對任意的${x_2}∈[{\frac{1}{2},2}]$,都有f(x1)≤g(x2)成立,則實數(shù)a的取值范圍是(-∞,ln2-$\frac{21}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(2,2).
(Ⅰ)求$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值;
(Ⅱ)λ為何值時,$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{a}$垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{3i}{1-i}$對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案