【題目】某籃球運(yùn)動(dòng)員的投籃命中率為,他想提高自己的投籃水平,制定了一個(gè)夏季訓(xùn)練計(jì)劃為了了解訓(xùn)練效果,執(zhí)行訓(xùn)練前,他統(tǒng)計(jì)了10場(chǎng)比賽的得分,計(jì)算出得分的中位數(shù)為15分,平均得分為15分,得分的方差為執(zhí)行訓(xùn)練后也統(tǒng)計(jì)了10場(chǎng)比賽的得分,成績(jī)莖葉圖如圖所示:

請(qǐng)計(jì)算該籃球運(yùn)動(dòng)員執(zhí)行訓(xùn)練后統(tǒng)計(jì)的10場(chǎng)比賽得分的中位數(shù)、平均得分與方差;

如果僅從執(zhí)行訓(xùn)練前后統(tǒng)計(jì)的各10場(chǎng)比賽得分?jǐn)?shù)據(jù)分析,你認(rèn)為訓(xùn)練計(jì)劃對(duì)該運(yùn)動(dòng)員的投籃水平的提高是否有幫助?為什么?

【答案】(1)中位數(shù):分,平均分: 15分,方差:20.6;(2)見(jiàn)解析

【解析】

由莖葉圖能計(jì)算該籃球運(yùn)動(dòng)員執(zhí)行訓(xùn)練后統(tǒng)計(jì)的10場(chǎng)比賽得分的中位數(shù),根據(jù)平均數(shù)公式可得平均分,由方差公式可得方差;盡管中位數(shù)訓(xùn)練后比訓(xùn)練前稍小,但平均得分一樣,訓(xùn)練后方差小于訓(xùn)練前方差說(shuō)明訓(xùn)練后得分穩(wěn)定性提高了,由此能求出結(jié)果.

訓(xùn)練后得分的中位數(shù)為:(分);

平均得分為:(分);

方差為:

盡管中位數(shù)訓(xùn)練后比訓(xùn)練前稍小,但平均得分一樣,訓(xùn)練后方差小于訓(xùn)練前方差,說(shuō)明訓(xùn)練后得分穩(wěn)定性提高了,這是投籃水平提高的表現(xiàn).故此訓(xùn)練計(jì)劃對(duì)該籃球運(yùn)動(dòng)員的投籃水平的提高有幫助

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,

(1)證明:,并求的通項(xiàng)公式;

(2)構(gòu)造數(shù)列求證:無(wú)論給定多么大的正整數(shù),都必定存在一個(gè),使.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了考察冰川的融化狀況,一支科考隊(duì)在某冰川山上相距8kmAB兩點(diǎn)各建一個(gè)考察基地,視冰川面為平面形,以過(guò)A、B兩點(diǎn)的直線為x軸,線段AB的垂直平分線為y軸建立平面直角坐標(biāo)系(圖4).考察范圍到A、B兩點(diǎn)的距離之和不超過(guò)10km的區(qū)域.

I)求考察區(qū)域邊界曲線的方程:

II)如圖4所示,設(shè)線段是冰川的部分邊界線(不考慮其他邊界),當(dāng)冰川融化時(shí),邊界線沿與其垂直的方向朝考察區(qū)域平行移動(dòng),第一年移動(dòng)0.2km,以后每年移動(dòng)的距離為前一年的2倍.問(wèn):經(jīng)過(guò)多長(zhǎng)時(shí)間,點(diǎn)A恰好在冰川邊界線上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,,橢圓上一點(diǎn),的距離之和為,且焦距是短軸長(zhǎng)的2.

1)求橢圓的方程;

2)過(guò)線段上一點(diǎn)的直線(斜率不為0)與橢圓相交于兩點(diǎn),當(dāng)的面積與的面積之比為時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】p:關(guān)于x的方程無(wú)解,q

1)若時(shí),“”為真命題,“”為假命題,求實(shí)數(shù)a的取值范圍.

2)當(dāng)命題“若p,則q”為真命題,“若q,則p”為假命題時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為、,離心率為,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1

求橢圓C的方程;

點(diǎn)為橢圓C上一動(dòng)點(diǎn),連接,,設(shè)的角平分線PM交橢圓C的長(zhǎng)軸于點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為,上頂點(diǎn)為.已知橢圓的離心率為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且點(diǎn)在第二象限.延長(zhǎng)線交于點(diǎn),若的面積是面積的3倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)高鐵的快速發(fā)展給群眾出行帶來(lái)巨大便利,極大促進(jìn)了區(qū)域經(jīng)濟(jì)社會(huì)發(fā)展.已知某條高鐵線路通車(chē)后,發(fā)車(chē)時(shí)間間隔(單位:分鐘)滿(mǎn)足,,經(jīng)測(cè)算,高鐵的載客量與發(fā)車(chē)時(shí)間間隔相關(guān):當(dāng)時(shí)高鐵為滿(mǎn)載狀態(tài),載客量為1000人;當(dāng)時(shí),載客量會(huì)在滿(mǎn)載基礎(chǔ)上減少,減少的人數(shù)與成正比,且發(fā)車(chē)時(shí)間間隔為5分鐘時(shí)的載客量為100.記發(fā)車(chē)間隔為分鐘時(shí),高鐵載客量為.

1)求的表達(dá)式;

2)若該線路發(fā)車(chē)時(shí)間間隔為分鐘時(shí)的凈收益(元),當(dāng)發(fā)車(chē)時(shí)間間隔為多少時(shí),單位時(shí)間的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足:.

1)寫(xiě)出數(shù)列的前6項(xiàng)的值;

2)猜想數(shù)列的單調(diào)性,選擇一種情形證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案