【題目】已知橢圓,直線l不經(jīng)過坐標原點O且不平行與坐標軸,l相交于A,B兩點,線段的中點為M.

1)證明:直線的斜率與直線l的斜率的乘積為定值;

2)若直線l過點,延長線交于點P,若四邊形是平行四邊形,求直線l的斜率;

【答案】(1) 直線的斜率與直線l的斜率的乘積為定值(2)

【解析】

(1)設(shè)點,再代入橢圓方程,相減后即可求得的斜率與中點的斜率.再化簡證明乘積為定值即可.

(2) ,再根據(jù)四邊形是平行四邊形可得在橢圓上,進而求得的關(guān)系,再設(shè)直線的方程,聯(lián)立橢圓方程求代入關(guān)系化簡即可.

(1) 設(shè),,,

-②得:,,

.,

,,

故直線的斜率與直線l的斜率的乘積為定值.

(2)由題,因為四邊形是平行四邊形,故,設(shè).又 ,且.

,化簡得.

當直線斜率為0, 四邊形不是平行四邊形.

故設(shè)直線的方程,則.

,又 ..

,故,.

故此時求直線l的斜率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對同學(xué)們而言,冬日的早晨離開暖融融的被窩,總是一個巨大的挑戰(zhàn),而咬牙起床的唯一動力,就是上學(xué)能夠不遲到.己知學(xué)校要求每天早晨7:15之前到校,7:15之后到校記為遲到.小明每天6:15會被媽媽叫醒起味,吃早餐、洗漱等晨間活動需要半個小時,故每天6:45小明就可以出門去上學(xué).從家到學(xué)校的路上,若小明選擇步行到校,則路上所花費的時間相對準確,若以隨機變量(分鐘)表示步行到校的時間,可以認為.若小明選擇騎共享單車上學(xué),雖然騎行速度快于步行,不過由于車況、路況等不確定因素,路上所需時間的隨機性增加,若以隨機變量(分鐘)描述騎車到校的時間,可以認為.若小明選擇坐公交車上學(xué),速度很快,但是由于等車時間、路況等不確定因素,路上所需時間的隨機性進一步增加,若以隨機變量(分鐘)描述坐公交車到校所需的時間,則可以認為

1)若某天小明媽媽出差沒在家,小明一覺醒來已經(jīng)是6:40了,他抓緊時間洗漱更衣,沒吃早飯就出發(fā)了,出門時候是6:50.請問,小明是否有某種出行方案,能夠保證上學(xué)不遲到?小明此時的最優(yōu)選擇是什么?

2)已知共享單車每20分鐘收費一元,若小明本周五天都騎共享單車上學(xué),以隨機變量表示這五天小明上學(xué)騎車的費用,求的期望與方差(此小題結(jié)果均保留三位有效數(shù)字)

已知若隨機變量,則%,%,%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計成半徑為1km的扇形,中心角).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形,其中點,分別在邊上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.

(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;

(2)試問:當為多少時,年總收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右頂點分別為AB,雙曲線AB為頂點,焦距為,點P上在第一象限內(nèi)的動點,直線AP與橢圓相交于另一點Q,線段AQ的中點為M,記直線AP的斜率為為坐標原點.

(1)求雙曲線的方程;

(2)求點M的縱坐標的取值范圍;

(3)是否存在定直線使得直線BP與直線OM關(guān)于直線對稱?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將初始溫度為的物體放在室溫恒定為的實驗室里,現(xiàn)等時間間隔測量物體溫度,將第次測量得到的物體溫度記為,已知.已知物體溫度的變化與實驗室和物體溫度差成正比(比例系數(shù)為.給出以下幾個模型,那么能夠描述這些測量數(shù)據(jù)的一個合理模型為__________:(填寫模型對應(yīng)的序號)

;②;③.

在上述模型下,設(shè)物體溫度從升到所需時間為,從上升到所需時間為,從上升到所需時間為,那么的大小關(guān)系是________(用,號填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年底,我國發(fā)明專利申請量已經(jīng)連續(xù)年位居世界首位,下表是我國年至年發(fā)明專利申請量以及相關(guān)數(shù)據(jù).

注:年份代碼分別表示.

1)可以看出申請量每年都在增加,請問這幾年中哪一年的增長率達到最高,最高是多少?

2)建立關(guān)于的回歸直線方程(精確到),并預(yù)測我國發(fā)明專利申請量突破萬件的年份.

參考公式:回歸直線的斜率和截距的最小二乘法估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為.

(1)過點的直線與拋物線相交于兩點,若,求直線的方程;

(2)是拋物線上的兩點,點的縱坐標分別為1,2,分別過點作傾斜角互補的兩條直線交拋物線于另外不同兩點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)閱兵領(lǐng)導(dǎo)小組辦公室介紹,2019年國慶70周年閱兵有59個方()隊和聯(lián)合軍樂團,總規(guī)模約15萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊15個.為了保證閱兵式時隊列保持整齊,各個方隊對受閱隊員的身高也有著非常嚴格的限制,太高或太矮都不行.徒步方隊隊員,男性身高普遍在175cm185cm之間;女性身高普遍在163cm175cm之間,這是常規(guī)標準.要求最為嚴格的三軍儀仗隊,其隊員的身高一般都在184cm190cm之間.經(jīng)過隨機調(diào)查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:某一閱兵女子身高不低于169cm,根據(jù)直方圖得到P(C)的估計值為05

(1)求直方圖中a,b的值;

(2)估計這個陣營女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連續(xù)投擲2粒大小相同,質(zhì)地均勻的骰子3次,則恰有2次點數(shù)之和不小于10的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案