19.某中學(xué)進(jìn)行高一學(xué)生體檢,根據(jù)檢查的學(xué)生每分鐘脈搏數(shù)繪制了頻率分布直方圖(如圖所示),根據(jù)頻率分布直方圖估計(jì)每分鐘搏數(shù)在[69,85]的概率約為0.6.
組號(hào)分組頻數(shù)
1[53,61)5
2[61,69)14
 3[69,77)25
4[77,85)11
5[85,93)5

分析 根據(jù)頻率的定義即可求出.

解答 解:樣本數(shù)據(jù)落在區(qū)間[69,85]的頻數(shù)為25+11=36,樣本容量為5+14+25+11+5=60
則樣本數(shù)據(jù)落在區(qū)間[69,85)的頻率為$\frac{36}{60}$=0.6,
故答案為:0.6

點(diǎn)評(píng) 本題考查了頻數(shù)分布表和頻率的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.不等式|x+1|≥kx對(duì)任意的x∈R均成立,則k的取值范圍是(  )
A.(-∞,0)B.[-1,0]C.[0,1]D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=$\sqrt{\frac{1+sinx}{1-sinx}}$-$\sqrt{\frac{1-sinx}{1+sinx}}$,且f(α)=1,α為第二象限角.
(1)求tanα的值.
(2)求sinαcosα+5cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知直線l:x-y-1=0,則直線的斜率為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列{an}通項(xiàng)公式an=$\left\{\begin{array}{l}{2n-3,n為奇數(shù)}\\{{2}^{n-1},n為偶數(shù)}\end{array}\right.$,則數(shù)列{an}的前8項(xiàng)和為190.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)向量$\overrightarrow a=({2,λ}),\overrightarrow b=({λ-1,1})$,若$\overrightarrow a∥\overrightarrow b$,則λ=-1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)y=f(x),若存在實(shí)數(shù)m、k(m≠0),使得對(duì)于定義域內(nèi)的任意實(shí)數(shù)x,均有m•f(x)=f(x+k)+f(x-k)成立,則稱函數(shù)y=f(x)為“可平衡”函數(shù),有序數(shù)對(duì)(m,k)稱為函數(shù)f(x)的“平衡”數(shù)對(duì);
(1)若m=$\sqrt{3}$,判斷f(x)=sinx是否為“可平衡”函數(shù),并說(shuō)明理由;
(2)若m1,m2∈R且(m1,$\frac{π}{2}$),(m2,$\frac{π}{4}$)均為f(x)=sin2x的“可平衡”數(shù)對(duì),當(dāng)0<x<$\frac{π}{3}$時(shí),方程m1+m2=a有兩個(gè)不相等的實(shí)根,求a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若隨機(jī)變量X服從正態(tài)分布N(1,4),設(shè)P(0<X<3)=m,P(-1<X<2)=n,則m、n的大小關(guān)系為( 。
A.m>nB.m<nC.m=nD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北省高二理上第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題

直線l1和l2是圓x2+y2=2的兩條切線.若l1與l2的交點(diǎn)為(1,3),則l1與l2的夾角的正切值等于________

查看答案和解析>>

同步練習(xí)冊(cè)答案