分析 由題意求得$\sqrt{3}$a+b=2,f(x)=asinx+(2-$\sqrt{3}$a)cosx,可得 k=-2$\sqrt{{(a-\frac{\sqrt{3}}{2})}^{2}+\frac{1}{4}}$,再利用二次函數(shù)的性質求得k的范圍.
解答 解:由題意可得f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$a+$\frac{2}$=1,∴$\sqrt{3}$a+b=2,∴f(x)=asinx+bcosx=asinx+(2-$\sqrt{3}$a)cosx.
∴k=-$\sqrt{{a}^{2}{+(2-a•\sqrt{3})}^{2}}$=-2$\sqrt{{(a-\frac{\sqrt{3}}{2})}^{2}+\frac{1}{4}}$≤-1,
當且僅當a=$\frac{\sqrt{3}}{2}$時,k取得最大值為-1,故k≤-1.
點評 本題主要考查三角函數(shù)的最值、二次函數(shù)的性質應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直角非等腰三角形 | B. | 等腰非等邊三角形 | ||
C. | 等腰直角三角形 | D. | 等邊三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{3}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com