圖6
A.a.>0,b>0 B.a.>0,b<0 C.a.<0,b>0 D.a.<0,b<0
科目:高中數(shù)學 來源: 題型:
5 |
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
π |
6 |
5π |
6 |
OA |
OB |
OC |
查看答案和解析>>
科目:高中數(shù)學 來源:全優(yōu)設計選修數(shù)學-1-2蘇教版 蘇教版 題型:022
如圖所示,直線l1與l2是同一平面內的兩條相交直線,它們有一個交點.如果在這個平面內再畫第三條直線l3,那么這三條直線最多可能有________個交點;如果在這個平面內再畫第4條直線,那么這4條直線最多可有________個交點.由此我們可以猜想:在同一個平面內,6條直線最多可有________個交點,n(n為大于1的整數(shù))條直線最多可有________個交點,用含n的代數(shù)式表示.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(湖南卷解析版) 題型:解答題
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
【解析】(Ⅰ)因為
又是平面PAC內的兩條相較直線,所以BD平面PAC,
而平面PAC,所以.
(Ⅱ)設AC和BD相交于點O,連接PO,由(Ⅰ)知,BD平面PAC,
所以是直線PD和平面PAC所成的角,從而.
由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因為四邊形ABCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積
在等腰三角形AOD中,
所以
故四棱錐的體積為.
【點評】本題考查空間直線垂直關系的證明,考查空間角的應用,及幾何體體積計算.第一問只要證明BD平面PAC即可,第二問由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com