【題目】用類比推理的方法填表:
等差數(shù)列{an}中 | 等比數(shù)列{bn}中 |
a3+a4=a2+a5 | b3b4=b2b5 |
a1+a2+a3+a4+a5=5a3 |
【答案】b1b2b3b4b5=b35
【解析】解:由等差數(shù)列的性質(zhì),a3+a4=a2+a5,與等比數(shù)列的性質(zhì)b3b4=b2b5,可得等差數(shù)列的加法性質(zhì)可類比推斷出等比數(shù)列的乘法性質(zhì),
則a1+a2+a3+a4+a5=5a3=a3+a3+a3+a3+a3,
類比推斷出在等比數(shù)列中
b1b2b3b4b5=b3b3b3b3b3=b35
所以答案是:b1b2b3b4b5=b35
【考點(diǎn)精析】本題主要考查了等比數(shù)列的基本性質(zhì)和類比推理的相關(guān)知識(shí)點(diǎn),需要掌握{(diào)an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對(duì)應(yīng)項(xiàng)成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項(xiàng)不為零的常數(shù)列;根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測(cè)其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由數(shù)字0,1,2,3組成的無(wú)重復(fù)數(shù)字的4位數(shù)中,比2019大的數(shù)的個(gè)數(shù)為( )
A.10B.11C.12D.13
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)隨機(jī)變量X~B(10,0.8),則D(2X+1)等于( )
A.1.6
B.3.2
C.6.4
D.12.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三人到戶外植樹,三人分工合作,一人挖坑和填土,一人施肥,一人澆水,他們的身高各不同,現(xiàn)了解到以下情況: ①甲不是最高的;
②最高的沒(méi)澆水;
③最矮的施肥;
④乙不是最矮的,也沒(méi)挖坑和填土.
可以判斷丙的分工是(從挖坑,施肥,澆水中選一項(xiàng)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|0<log4x<1},B={x|x2﹣4≤0},則A∩B=( )
A.(0,1)
B.(0,2]
C.(1,2)
D.(1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a﹣x2(1≤x≤2)與g(x)=2x+1的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[﹣2,﹣1]
B.[﹣1,1]
C.[1,3]
D.[3,+∞]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用二分法找函數(shù)f(x)=2x+3x﹣7在區(qū)間[0,4]上的零點(diǎn)近似值,取區(qū)間中點(diǎn)2,則下一個(gè)存在零點(diǎn)的區(qū)間為( )
A.(0,1)
B.(0,2)
C.(2,3)
D.(2,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=ax2﹣bx+1(a≠0)是定義在R上的偶函數(shù),則函數(shù)g(x)=ax3+bx2+x(x∈R)是( )
A.奇函數(shù)
B.偶函數(shù)
C.非奇非偶函數(shù)
D.既是奇函數(shù)又是偶函數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com