若直線l過點(diǎn)(1,-1),與圓x2+y2=1相切,求直線l的方程.
考點(diǎn):圓的切線方程
專題:直線與圓
分析:用點(diǎn)斜式設(shè)出切線方程,根據(jù)圓心(0,0)到切線的距離等于半徑列方程求出斜率,即得切線方程.
解答: 解:設(shè)切線的斜率為k,則切線方程為y+1=k(x-1),即 kx-y-1-k=0.
根據(jù)圓心(0,0)到切線的距離等于半徑可得
|-k-1|
1+k2
=1
解得k=0,故切線方程為y=1.
當(dāng)直線的斜率不存在時(shí),直線方程為x=1與已知圓相切
綜上可得,與已知圓相切的圓的方程為:y=1或x=1
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,但要注意結(jié)論:過圓外一點(diǎn)作已知圓的切線有兩條,當(dāng)所求的直線的斜率只要一個(gè)時(shí),說明另一條切線的斜率不存在
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某班有男生18名,女生22名,若要選派男、女生各一名作為學(xué)生代表參加學(xué)代會(huì),共有多少種不同的選擇結(jié)果?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m>0,n>0,且
1
m
+
9
n
=1,證明:m+n≥16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2(-1≤x≤1)
1
x
(x>1)
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為
2
,且過點(diǎn)(4,-
10
).求雙曲線的標(biāo)準(zhǔn)方程;
(2)已知曲線C上任意一點(diǎn)M到點(diǎn)F(0,1)的距離比它到直線l:y=-2的距離小1.求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2013年春節(jié)期間,某超市舉行了“過年七天樂”有獎(jiǎng)購物活動(dòng),每位顧客消費(fèi)100元,可享受20元的打折,并參加一次博彩游戲,游戲規(guī)則如下:擲兩顆正方體骰子,點(diǎn)數(shù)之和為12,則獲一等獎(jiǎng),可得a元的大獎(jiǎng);點(diǎn)數(shù)之和為11或10,獲二等獎(jiǎng),可得價(jià)值100元的禮品包;點(diǎn)數(shù)小于10元的不得獎(jiǎng).
(1)求一位顧客消費(fèi)100元獲獎(jiǎng)的概率;
(2)如果該超市在該項(xiàng)活動(dòng)中不能虧本,從期望的角度看a值最多可設(shè)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值,且函數(shù)f(x)圖象上以點(diǎn)A(3,f(3))為切點(diǎn)的切線與直線5x-y+1=0平行.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若方程f(x)=k有3個(gè)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2x , x≤-1 , 
-2 , -1<x<1 , 
-2x , x≥1 , 

(1)在所給方格紙上畫出函數(shù)f(x)的圖象;
(2)若f(t)=-3,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由下列不等式:1>
1
2
,1+
1
2
+
1
3
>1,1+
1
2
+
1
3
+…+
1
7
3
2
,1+
1
2
+
1
3
+…+
1
15
>2,…,你能猜想得到一個(gè)怎樣的一般不等式?用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案