如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B,C兩點,圓心O在∠PAC的內(nèi)部,點M是BC的中點.
(Ⅰ)證明A,P,O,M四點共圓;
(Ⅱ)求∠OAM+∠APM的大�。�
【答案】分析:(1)要證明四點共圓,可根據(jù)圓內(nèi)接四邊形判定定理:四邊形對角互補,而由AP是⊙O的切線,P為切點,易得∠APO=90°,故解答這題的關(guān)鍵是證明,∠AMO=90°,根據(jù)垂徑定理不難得到結(jié)論.
(2)由(1)的結(jié)論可知,∠OPM+∠APM=90°,只要能說明∠OPM=∠OAM即可得到結(jié)論.
解答:證明:(Ⅰ)連接OP,OM.
因為AP與⊙O相切于點P,所以O(shè)P⊥AP.
因為M是⊙O的弦BC的中點,所以O(shè)M⊥BC.
于是∠OPA+∠OMA=180°.
由圓心O在∠PAC的內(nèi)部,可知四邊形M的對角互補,
所以A,P,O,M四點共圓.
解:(Ⅱ)由(Ⅰ)得A,P,O,M四點共圓,所以∠OAM=∠OPM.
由(Ⅰ)得OP⊥AP.
由圓心O在∠PAC的內(nèi)部,可知∠OPM+∠APM=90°.
又∵A,P,O,M四點共圓
∴∠OPM=∠OAM
所以∠OAM+∠APM=90°.
點評:本題是考查同學們推理能力、邏輯思維能力的好資料,題目以證明題為主,特別是一些定理的證明和用多個定理證明一個問題的題目,我們注意熟練掌握:1.射影定理的內(nèi)容及其證明; 2.圓周角與弦切角定理的內(nèi)容及其證明;3.圓冪定理的內(nèi)容及其證明;4.圓內(nèi)接四邊形的性質(zhì)與判定;
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

22、如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B,C兩點,圓心O在∠PAC的內(nèi)部,點M是BC的中點.
(Ⅰ)證明A,P,O,M四點共圓;
(Ⅱ)求∠OAM+∠APM的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

22、如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B,C兩點,圓心O在∠PAC的內(nèi)部,點M是BC的中點.
(Ⅰ)證明A,P,O,M四點共圓;
(Ⅱ)求∠OAM+∠APM的大�。�

查看答案和解析>>

科目:高中數(shù)學 來源:2012年內(nèi)蒙古赤峰市元寶山二中高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B,C兩點,圓心O在∠PAC的內(nèi)部,點M是BC的中點.
(Ⅰ)證明A,P,O,M四點共圓;
(Ⅱ)求∠OAM+∠APM的大�。�

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�