在等比數(shù)列{an}中,如果a1•a3=2a2,Sn是等差數(shù)列{bn}的前n項(xiàng)和,且b3=a2,則S5=
 
考點(diǎn):等比數(shù)列的通項(xiàng)公式,等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:由等比數(shù)列{an}的性質(zhì)可得:a1•a3=
a
2
2
,即可得出a2.由等差數(shù)列{bn}的性質(zhì)可得,
b1+b5
2
=b3.再利用等差數(shù)列的前n項(xiàng)和公式可得S5=
5(b1+b5)
2
解答: 解:由等比數(shù)列{an}的性質(zhì)可得:a1•a3=
a
2
2
=2a2,∴a2=2.
由等差數(shù)列{bn}的性質(zhì)可得,
b1+b5
2
=b3=a2=2.
S5=
5(b1+b5)
2
=5.
故答案為:5.
點(diǎn)評:本題考查了等比數(shù)列與等差數(shù)列的性質(zhì)及其前n項(xiàng)和公式,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(1-tanx)(1+sin2x+cos2x)-3
(Ⅰ)求f(x)的定義域、值域和最小正周期;
(Ⅱ)若f(
α
2
)-f(
α
2
+
π
4
)=
6
,其中α∈(0,
π
2
),求α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線D的頂點(diǎn)是橢圓
x2
4
+
y2
3
=1的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合
(1)求拋物線D的方程;
(2)已知動直線l過點(diǎn)P(4,0),交拋物D于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O為PQPQ中點(diǎn),求證∠AQP=∠BQP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,二面角A-CD-A1的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線a在平面α外,是指直線a和平面α
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(π+α)=-
3
5
,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓柱的底面半徑為1,母線長與底面的直徑相等,則該圓柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)2-3i(i是虛數(shù)單位)的實(shí)部、虛部分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5名學(xué)生與2名教師排成一排拍照,2名教師相鄰且不排在兩端,共有不同的排法種數(shù)為(  )
A、1440B、960
C、720D、480

查看答案和解析>>

同步練習(xí)冊答案