9.設a∈Z,且0≤a≤13,若512015+a能被13整除,則a=1.

分析 根據(jù)512015+a=(52-1)2015+a,把(52-1)2015+a 按照二項式定理展開,結(jié)合題意可得-1+a能被13整除,由此求得a的范圍.

解答 解:∵512015+a=(52-1)2015+a
=-C20150•522015+C20151•522014-C20152•522013+…-C20152014•521-1+a
能被13整除,0≤a<13,
故-1+a=-1+a能被13整除,故a=1,
故答案為:1.

點評 本題主要考查二項式定理的應用,二項式展開式的通項公式,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015-2016學年江西省南昌市高二理下學期期末考試數(shù)學試卷(解析版) 題型:選擇題

,若,則的值等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知直線l的極坐標方程為ρsin(θ+$\frac{π}{3}$)=$\sqrt{3}$,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$.(φ為參數(shù))
(1)寫出直線l的直角坐標方程和曲線C的普通方程;
(2)求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若全集U=R.A={x|1≤x≤5}.B={x|5≤x≤10}.則∁U(A∩B)=(  )
A.{x|x≠5}B.{x|x=5}C.{x|x<5}D.{x|x>5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率是$\frac{{\sqrt{2}}}{2}$,上頂點B是拋物線x2=4y的焦點.
(Ⅰ)求橢圓M的標準方程;
(Ⅱ)若P、Q是橢圓M上的兩個動點,且OP⊥OQ(O是坐標原點),由點O作OR⊥PQ于R,試求點R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設函數(shù)f(x)=sin2(x+$\frac{π}{4}$)-cos2(x+$\frac{π}{4}$)(x∈R),則函數(shù)f(x)是(  )
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,方格紙上正方形小格的邊長為1,圖中粗實線畫出的是由一個正方體截得的一個幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{16}{3}$B.$\frac{32}{3}$C.$\frac{64}{3}$D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知曲線C的極坐標方程是ρ-2cosθ-4sinθ=0,以極點為在平面直角坐標系的原點,極軸為x軸的正半軸建立平面直角坐標系xoy,直線的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{2}t\\ y=1+\frac{1}{2}t\end{array}\right.$(t為參數(shù)).
(1)將曲線C的極坐標方程化為直角坐標方程,將直線l的參數(shù)方程化為普通方程;
(2)若直線l與曲線C相交于A,B兩點,與y軸交于點M,求(|MA|+|MB|)2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.曲線y=x2的一種參數(shù)方程是( 。
A.$\left\{{\begin{array}{l}{x={t^2}}\\{y={t^4}}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=sint}\\{y={{sin}^2}t}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$

查看答案和解析>>

同步練習冊答案