如圖,在半徑為R、圓心角為的扇形金屬材料中剪出一個(gè)長(zhǎng)方形EPQF,并且EP與∠AOB的平分線OC平行,設(shè)∠POC=θ.
(1)試寫出用θ表示長(zhǎng)方形EPQF的面積S(θ)的函數(shù);
(2)在余下的邊角料中在剪出兩個(gè)圓(如圖所示),試問當(dāng)矩形EPQF的面積最大時(shí),能否由這個(gè)矩形和兩個(gè)圓組成一個(gè)有上下底面的圓柱?如果可能,求出此時(shí)圓柱的體積.

【答案】分析:(1)在Rt△OPC中,OP=R,∠POC=θ,可求PC,OC,從而可得EF,EP,即可求長(zhǎng)方形EPQF的面積,;
(2)制成圓柱的底面周長(zhǎng)為EF,半徑可求,△OEF的內(nèi)切圓半徑可求,兩半徑比較得出結(jié)論.
解答:解:(1)由條件得,
從而.…(4分)
(2)由(1)得,
所以當(dāng)時(shí),即取得最大值,為.…(7分)
此時(shí),,
所以EPQF為正方形,依題意知制成的圓柱底面應(yīng)是由EF圍成的圓,
從而由周長(zhǎng),得其半徑為.…(11分)
另一方面,如圖所示,設(shè)圓與OA邊切于點(diǎn)H,連接GE、GH、GA,
設(shè)兩小圓的半徑為GH=r,則,
且AH>r,從而,所以,
因0.084R<0.10R,
所以能作出滿足條件的兩個(gè)圓.此時(shí)圓柱的體積.…(16分)
點(diǎn)評(píng):本題用柱體的側(cè)面積和體積作為載體,重點(diǎn)考查了三角函數(shù)的運(yùn)算與性質(zhì),求側(cè)面積 S(θ)的最大值和柱體的體積時(shí),考查了兩角和與差的運(yùn)算,且運(yùn)算量較大,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為r的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓,又在此內(nèi)切圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)Sn為前n個(gè)圓的面積之和,則
lim
n→∞
Sn=( 。
A、2πr2
B、
8
3
πr2
C、4πr2
D、6πr2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓內(nèi)隨機(jī)撒一粒黃豆,它落在陰影部分內(nèi)接正三角形上的概率是(  )
A、
3
4
B、
3
3
4
C、
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半徑為r的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓,又在此內(nèi)切圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)Sn為前n個(gè)正六邊形的面積之和,則
lim
n→∞
Sn=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新人教版高三上學(xué)期單元測(cè)試(5)數(shù)學(xué)試卷 題型:選擇題

如圖,在半徑為r 的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓,又在此內(nèi)切

圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)為前n個(gè)圓的面積之和,則=(    )

A.2          B.    

 

C.4           D.6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年孝感高中高一下學(xué)期期末考試數(shù)學(xué)卷 題型:選擇題

如圖,在半徑為r的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓, 

又在此內(nèi)切圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)為前

個(gè)正六邊形的面積之和,則=(   )

A.               B.                C.               D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案