如圖,為圓的直徑,點、在圓上,矩形所在的平面和圓所在的平面互相垂直,且,.

(Ⅰ)求證:平面
(Ⅱ)求三棱錐的體積.
(1)根據(jù)題意,由于平面平面,推理得到平面,然后加以證明。
(2)

試題分析:(Ⅰ)證明:平面平面,,
平面平面
平面,            
∵AF在平面內(nèi),∴,            3分
為圓的直徑,∴,                   
平面.                       6分
(Ⅱ)解:由(1)知,
∴三棱錐的高是,
,      8分
連結(jié)、,可知
為正三角形,∴正的高是,      10分
,    12分

點評:解決的關(guān)鍵是根據(jù)線面垂直度 判定定理和等體積法求解體積,屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形, ,中點.

(Ⅰ)證明:平面;
(Ⅱ)求異面直線BS與AC所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知二面角α–l-β的平面角為45°,有兩條異面直線a,b分別垂直于平面,則異面直線所成角的大小是                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

 是雙曲線 上一點,、分別是雙曲線的左、右頂點,直線的斜率之積為.

(1)求雙曲線的離心率;
(2)過雙曲線的右焦點且斜率為1的直線交雙曲線于,兩點,為坐標原點,為雙曲線上一點,滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知P是正方形ABCD外一點,且PA=3,PB=4,則PC的最大值是___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形均為菱形,,且.

(1)求證:;
(2)求證:;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點.

求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

關(guān)于直線與平面、,有下列四個命題: 
,則;   ②,則;
,則;  ④,則.
其中假命題的序號是:(   )
A.①、②B.③、④C.②、③D.①、④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知在四棱錐中,,,,分別是的中點.

(Ⅰ)求證;
(Ⅱ)求證;
(Ⅲ)若,求二面角的大小.

查看答案和解析>>

同步練習冊答案