【題目】已知常數(shù),數(shù)列的前項(xiàng)和為, 且 .
(1)求證:數(shù)列為等差數(shù)列;
(2)若 ,且數(shù)列是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍;
(3)若 ,數(shù)列滿足:對(duì)于任意給定的正整數(shù) ,是否存在 ,使 ?若存在,求 的值(只要寫出一組即可);若不存在,說明理由.
【答案】(Ⅰ)見解析
(Ⅱ)
(Ⅲ), (或 )
【解析】
(Ⅰ)由題證明(常數(shù))即可證明數(shù)列是等差數(shù)列;
(Ⅱ)由(Ⅰ)知,結(jié)合題意在對(duì)是奇數(shù)和是偶數(shù)分別進(jìn)行討論得答案.
(Ⅲ)由(Ⅰ)知,,設(shè)對(duì)任意正整數(shù),都存在正整數(shù),使 ,得,進(jìn)而得出答案.
(Ⅰ)∵ ∴, ,
∴
化簡(jiǎn)得:(常數(shù)),
∴ 數(shù)列是以 為首項(xiàng),公差為的等差數(shù)列;
(Ⅱ)由(Ⅰ)知 ,又∵ , ,
∴ ,∴
①當(dāng)是奇數(shù)時(shí),∵ ,∴,
令 ,∴
∵
∴ ,且,∴ ;
② 當(dāng)是偶數(shù)時(shí),∵ ,∴ ,
令 ,∴
∵
∴ ,且,∴ ;
綜上可得:實(shí)數(shù)的取值范圍是 .
(Ⅲ)由(Ⅰ)知,,又∵,
設(shè)對(duì)任意正整數(shù),都存在正整數(shù),使 ,
∴,∴
令,則 (或 )
∴ (或)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知圓:和拋物線:,圓的切線與拋物線相交于不同的兩點(diǎn),.
(1)當(dāng)直線的斜率為1時(shí),求;
(2)設(shè)點(diǎn)為點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是否存在直線,使得?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代在珠算發(fā)明之前多是用算籌為工具來記數(shù)、列式和計(jì)算的.算籌實(shí)際上是一根根相同長(zhǎng)度的小木棍,如圖,算籌表示數(shù)1~9的方法有兩種,即“縱式”和“橫式”,規(guī)定個(gè)位數(shù)用縱式,十位數(shù)用橫式,百位數(shù)用縱式,千位數(shù)用橫式,萬(wàn)位數(shù)用縱式……依此類推,交替使用縱橫兩式.例如:27可以表示為“”.如果用算籌表示一個(gè)不含“0”的兩位數(shù),現(xiàn)有7根小木棍,能表示多少個(gè)不同的兩位數(shù)( )
A.54B.57C.65D.69
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:1(a>b>0)的離心率為,右準(zhǔn)線方程為x=4,A,B分別是橢圓C的左,右頂點(diǎn),過右焦點(diǎn)F且斜率為k(k>0)的直線l與橢圓C相交于M,N兩點(diǎn)(其中,M在x軸上方).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)線段MN的中點(diǎn)為D,若直線OD的斜率為,求k的值;
(3)記△AFM,△BFN的面積分別為S1,S2,若,求M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌餐飲公司準(zhǔn)備在10個(gè)規(guī)模相當(dāng)?shù)牡貐^(qū)開設(shè)加盟店,為合理安排各地區(qū)加盟店的個(gè)數(shù),先在其中5個(gè)地區(qū)試點(diǎn),得到試點(diǎn)地區(qū)加盟店個(gè)數(shù)分別為1,2,3,4,5時(shí),單店日平均營(yíng)業(yè)額(萬(wàn)元)的數(shù)據(jù)如下:
加盟店個(gè)數(shù)(個(gè)) | 1 | 2 | 3 | 4 | 5 |
單店日平均營(yíng)業(yè)額(萬(wàn)元) | 10.9 | 10.2 | 9 | 7.8 | 7.1 |
(1)求單店日平均營(yíng)業(yè)額(萬(wàn)元)與所在地區(qū)加盟店個(gè)數(shù)(個(gè))的線性回歸方程;
(2)根據(jù)試點(diǎn)調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個(gè)地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營(yíng)業(yè)額預(yù)計(jì)值總和不低于35萬(wàn)元,求一個(gè)地區(qū)開設(shè)加盟店個(gè)數(shù)的所有可能取值;
(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個(gè)地區(qū)(加盟店都不少于2個(gè))中隨機(jī)選一個(gè)地區(qū)加入,求他們選取的地區(qū)相同的概率.
(參考數(shù)據(jù)及公式:,,線性回歸方程,其中,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,橢圓的極坐標(biāo)方程為,其左焦點(diǎn)在直線上.
(1)若直線與橢圓交于兩點(diǎn),求的值;
(2)求橢圓的內(nèi)接矩形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱的底面是邊長(zhǎng)為的菱形,且,平面,,于點(diǎn),點(diǎn)是的中點(diǎn).
(1)求證:平面;
(2)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A、B兩點(diǎn)的坐標(biāo)分別為(0,1)、(0,﹣1),動(dòng)點(diǎn)P滿足直線AP與直線BP的斜率之積為,直線AP、BP與直線y=﹣2分別交于點(diǎn)M、N.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)求線段MN的最小值;
(3)以MN為直徑的圓是否經(jīng)過某定點(diǎn)?若經(jīng)過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不經(jīng)過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com