在平面直角坐標(biāo)系中,已知單位圓的圓心與坐標(biāo)原點(diǎn)重合,且與x軸正半軸交于點(diǎn)A,圓上一點(diǎn)P(-
3
2
,
1
2
),則劣弧
AP
的弧長為( 。
A、
π
6
B、
π
3
C、
3
D、
6
考點(diǎn):弧長公式
專題:三角函數(shù)的求值
分析:設(shè)直線OP的傾斜角為θ.可得kOP=-
3
3
=tanθ.即可解得θ.再利用弧長公式即可得出.
解答: 解:設(shè)直線OP的傾斜角為θ.
∴kOP=
1
2
-
3
2
=-
3
3
=tanθ.
θ=
6

∴劣弧
AP
的弧長=r×θ=
6

故選:D.
點(diǎn)評:本題考查了直線的傾斜角與斜率直角的關(guān)系、弧長公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的外接球的表面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)=
3x-1,x≤0
f(x-1)-f(x-2),x>0
,則f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈Z,集合A={x|x=2k-1,k∈Z},集合B={x|x=2k,k∈Z}.若命題p:?x∈A,2x∈B.則(  )
A、¬p:?x∈A,2x∉B
B、¬p:?x∉A,2x∉B
C、¬p:?x∉A,2x∈B
D、¬p:?x∈A,2x∉B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個不同的平面α,β,γ和兩條不重合的直線m,n,有下列4個命題:
①若m∥α,α∩β=n,則m∥n;
②若m⊥α,m∥n,n?β,則α⊥β;
③若α⊥β,γ⊥β,則α∥γ;
④若α∩β=m,m⊥γ,則α⊥γ.
其中正確命題的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,x+1<0”的否定是( 。
A、?x∈R,x+1≥0
B、?x∈R,x+1≥0
C、?x∈R,x+1>0
D、?x∈R,x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=
1
2
”是“直線ax-y-4=0與直線x-2y-m=0平行”的( 。
A、充要條件
B、充分而不必要條件
C、必要而不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(0,1),O(0,0),A(1,0)為平面直角坐標(biāo)系內(nèi)的三點(diǎn),若過點(diǎn)P的直線l與線段OA有公共點(diǎn),則直線l的傾斜角的取值范圍是( 。
A、[0,
π
4
]
B、[
π
4
,
π
2
]
C、[
π
2
,
4
]
D、[
4
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列對應(yīng)是從A到B的函數(shù)的選項(xiàng)是( 。
A、A=B=N+,f:x→|x-3|
B、A={三角形},B={圓},f:三角形的內(nèi)切圓
C、A=R,B={1},f:x→y=1
D、A=[-1,1],B=[-1,1],f:x→x2+y2=1

查看答案和解析>>

同步練習(xí)冊答案