題(19)圖
(Ⅰ)異面直線A1D與B1C1的距離;
(Ⅱ)四棱錐C-ABDE的體積。
解法一:(Ⅰ)由直三棱柱的定義知B1C1⊥B1D,又因為∠ABC=90°,因此B1C1⊥A1B1,從而B1C1⊥平面A1B1D,得B1C1⊥B1E。又B1E⊥A1D,故B1E是異面直線B1C1與A1D的公垂線
由知
在Rt△A1B1D中,A1D=
又因
故B1E=
(Ⅱ)由(Ⅰ)知B1C1⊥平面A1B1D,又BC∥B1C1,故BC⊥平面ABDE,即BC為四棱錐C-ABDE的高。從而所求四棱錐的體積V為
V=VC-ABDE=
其中S為四邊形ABDE的面積。如答(19)圖1,過E作EF⊥B1D,垂足為F。
答(19)圖1
在Rt△B1ED中,ED=
又因 =
故EF=
因△A1AE的邊A1A上的高故
=
又因為=從而
S=--=2-
所以
解法二:(Ⅱ)如答(19)圖2,以B點為坐標原點O建立空間直角坐標系O-xyz,則
答(19)圖2
A(0,1,0),A1(0,1,2),B(0,0,0).
B1(0,0,2),C1(,0,2),D(0,0, )
因此
設E(,y0,z0),則,
因此
又由題設B1E⊥A1D,故B1E是異面直線B1C1與A1D的公垂線。
下面求點E的坐標。
因B1E⊥A1D,即
又
聯(lián)立(1)、(2),解得,,即,。
所以.
(Ⅱ)由BC⊥AB,BC⊥DB,故BC⊥面ABDE.即BC為四棱錐C-ABDE的高.
下面求四邊形ABDE的面積。
因為SABDE=S△ABE+ S△BDE,
而S△ABE=
S△BDE=
故SABDE=
所以
科目:高中數(shù)學 來源: 題型:
(本小題滿分13分,(Ⅰ)小問6分,(Ⅱ)小問7分.)
如題(19)圖,在中,B=,AC=,D、E兩點分別在AB、AC上。使
,DE=3。現(xiàn)將沿DE折成直二角角,求:
(Ⅰ)異面直線AD與BC的距離;
(Ⅱ)二面角A-EC-B的大。ㄓ梅慈呛瘮(shù)表示)。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年湖北省高二上學期期中考試數(shù)學理卷 題型:解答題
(本小題滿分12分)如圖所示,在直三棱柱中,、、分別是、、的中點,是上的點.
(1)求直線與平面所成角的正切值的最大值;
(2)求證:直線平面;
(3)求直線與平面的距離.
|
查看答案和解析>>
科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試理科數(shù)學(重慶卷) 題型:解答題
(本小題滿分13分,(Ⅰ)小問6分,(Ⅱ)小問7分.)
如題(19)圖,在中,B=,AC=,D、E兩點分別在AB、AC上。使
,DE=3,F(xiàn)將沿DE折成直二角角,求:
(Ⅰ)異面直線AD與BC的距離;
(Ⅱ)二面角A-EC-B的大小(用反三角函數(shù)表示)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
題(19)圖
(Ⅰ)求異面直線DE與B1C1的距離;
(Ⅱ)若BC=,求二面角A1-DC1-B1的平面角的正切值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com