已知正方形ABCD的邊長為2,H是邊DA的中點.在正方形ABCD內部隨機取一點P,則滿足|PH|<
2
的概率為(  )
分析:根據(jù)幾何概型的概率計算公式,分別求出正方形的面積和滿足|PH|<
2
的正方形內部的點P的集合”的面積即可求出所求.
解答:解:(1)如圖所示,正方形的面積S正方形ABCD=2×2=4.
設“滿足|PH|<
2
的正方形內部的點P的集合”為事件M,
則S(M)=S△DGH+S△AEH+S扇形EGH=2×
1
2
×1×1+
1
2
×
2
×
π
2
×
2
=1+
π
2
,
∴P(M)=
1+
π
2
4
=
π
8
+
1
4

故滿足|PH|<
2
的概率為
π
8
+
1
4

故選B.
點評:本題主要考查了幾何概型的概率,區(qū)域的面積和長度以及要求的事件的區(qū)域的面積和長度是解題的關鍵.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為2,中心為O,四邊形PACE是直角梯形,設PA⊥平面ABCD,且PA=2,CE=1,
(1)求證:面PAD∥面BCE.
(2)求PO與平面PAD所成角的正弦.
(3)求二面角P-EB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正方形ABCD的中心為E(-1,0),一邊AB所在的直線方程為x+3y-5=0,求其它三邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O,將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為1,設
AB
=
a
,
BC
=
b
AC
=
c
,則|
a
-
b
+
c
|等于(  )
A、0
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為
2
,
AB
=
a
BC
=
b
,
AC
=
c
,則|
a
+
b
+
c
|
=
4
4

查看答案和解析>>

同步練習冊答案