△ABC中, =,EF∥BC交AC于F點,設=,=,則,表示向量        .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,E,F(xiàn)分別為AC,BC的中點.
(1)求證:EF∥平面PAB;
(2)若PE⊥平面ABC,∠ABC=90°,求證:BC⊥平面PEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在邊長為3的正三角形ABC中,E,F(xiàn),P分別為AB,AC,
BC上的點,且滿足AE=FC=CP=1.將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連接A1B,A1P(如圖2).
(Ⅰ)求證:A1E⊥平面BEP;
(Ⅱ)求直線A1E與平面A1BP所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鐘祥市模擬)在△ABC中,E,F(xiàn)分別是AC,AB的中點,且3AB=2AC,若
BE
CF
<t
恒成立,則t的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,E,F(xiàn),G,H分別是AB,AC,PC,BC的中點,且PA=PB,AC=BC,求證:(1)AB⊥PC;(2)PE∥平面FGH.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕頭二模)如圖,在邊長為3的等邊三角形ABC中,E,F(xiàn),P分別為AB,AC,BC邊上的點,且滿足AE=FC=CP=1,將△AEF沿EF折起到△A1EF的位置,如圖,使平面A1EF⊥平面FEBP,連結A1B,A1P,
(1)求證:A1E⊥PF;
(2)若Q為A1B中點,求證:PQ∥平面A1EF.

查看答案和解析>>

同步練習冊答案