A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 3 |
分析 作出不等式組對應(yīng)的平面區(qū)域,z=$\frac{y+1}{x+1}$的幾何意義是區(qū)域內(nèi)的點到定點(-1,-1)的斜率,利用數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:作出約束條件$\left\{\begin{array}{l}{3x+y-6≤0}\\{x-y-2≤0}\\{x≥1}\end{array}\right.$所對應(yīng)的可行域(如圖陰影),z=$\frac{y+1}{x+1}$
的幾何意義是區(qū)域內(nèi)的點到定點P(-1,-1)的斜率,
由圖象知可知PA的斜率最大,
由$\left\{\begin{array}{l}{x=1}\\{3x+y-6=0}\end{array}\right.$,得A(1,3),
則z=$\frac{3+1}{1+1}$=2,
即z的最大值為2,
故選:C.
點評 本題考查簡單線性規(guī)劃,涉及直線的斜率公式,準(zhǔn)確作圖是解決問題的關(guān)鍵,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
次數(shù) | 1 | 2 | 3 | 4 | 5 |
物理(x分) | 90 | 85 | 74 | 68 | 63 |
數(shù)學(xué)(y分) | 130 | 125 | 110 | 95 | 90 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,3) | B. | (-∞,2]∪[3,+∞) | C. | (0,2]∪[3,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?a>2,x1-x2=0 | B. | ?a>2,x1-x2=1 | C. | ?a>2,|x1-x2|=2 | D. | ?a>2,|x1-x2|=3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com