已知平面四邊形的對角線交于點,,且,.現(xiàn)沿對角線將三角形翻折,使得平面平面.翻折后: (Ⅰ)證明:;(Ⅱ)記分別為的中點.①求二面角大小的余弦值; ②求點到平面的距離

 

【解析】本試題主要考查了空間中點、線、面的位置關系的綜合運用。以及線線垂直和二面角的求解的立體幾何試題運用。

 

【答案】

解:(Ⅰ)證明:因為平面四邊形的對角線交于點,,那么沿著AC折疊前后,垂直關系不變,因此

(II)分別以OD,OA,OB為z,x,y軸建立空間直角坐標系,然后表示出點的坐標,求解法向量來求解二面角和點到面的距離。因為

解得二面角大小的余弦值為

且有,而點到平面的距離為

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知矩形ABCD的對角線交于點P(2,0),邊AB所在直線的方程為x-3y-6=0,點(-1,1)在邊AD所在的直線上,
(1)求矩形ABCD的外接圓的方程;
(2)已知直線l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求證:直線l與矩形ABCD的外接圓恒相交,并求出相交的弦長最短時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省唐山市豐南一中高二(上)期中數(shù)學試卷(解析版) 題型:解答題

已知矩形ABCD的對角線交于點P(2,0),邊AB所在直線的方程為x-3y-6=0,點(-1,1)在邊AD所在的直線上,
(1)求矩形ABCD的外接圓的方程;
(2)已知直線l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求證:直線l與矩形ABCD的外接圓恒相交,并求出相交的弦長最短時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省荊州中學高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知矩形ABCD的對角線交于點P(2,0),邊AB所在直線的方程為x-3y-6=0,點(-1,1)在邊AD所在的直線上,
(1)求矩形ABCD的外接圓的方程;
(2)已知直線l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求證:直線l與矩形ABCD的外接圓恒相交,并求出相交的弦長最短時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省蚌埠二中2013屆高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

已知平面四邊形的對角線交于點,,且,,.現(xiàn)沿對角線將三角形翻折,使得平面平面.翻折后: (Ⅰ)證明:;(Ⅱ)記分別為的中點.①求二面角大小的余弦值; ②求點到平面的距離

 

【解析】本試題主要考查了空間中點、線、面的位置關系的綜合運用。以及線線垂直和二面角的求解的立體幾何試題運用。

 

查看答案和解析>>

同步練習冊答案