【題目】已知f(x)= ,則下列結(jié)論正確的是(
A.f(x)為偶函數(shù)
B.f(x)為增函數(shù)
C.f(x)為周期函數(shù)
D.f(x)值域?yàn)椋ī?,+∞)

【答案】D
【解析】解:A.∵f(π)=π﹣1,f(﹣π)=sin2π=0,
∴f(﹣x)≠f(x),則函數(shù)f(x)不是偶函數(shù),故A錯(cuò)誤,
B.當(dāng)x≤0時(shí),函數(shù)不單調(diào),則函數(shù)f(x)不是增函數(shù),故B錯(cuò)誤,
C.當(dāng)x>0時(shí),函數(shù)為增函數(shù),不是周期函數(shù),故C錯(cuò)誤,
D.當(dāng)x>0時(shí),f(x)=|x|﹣1>﹣1,
當(dāng)x≤0時(shí),f(x)=sin2x∈[0,1],
綜上f(x)>﹣1,即函數(shù)的值域?yàn)椋ī?,+∞),
故選:D
【考點(diǎn)精析】掌握命題的真假判斷與應(yīng)用和函數(shù)單調(diào)性的判斷方法是解答本題的根本,需要知道兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系;單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)求f(1)+f(﹣3)的值;
(3)求f(a+1)的值(其中a>﹣4且a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=an2+an(n∈N*),設(shè)cn=(﹣1)n ,則數(shù)列{cn}的前2017項(xiàng)的和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),的正半軸為極軸建立極坐標(biāo)系.

I)求直線的極坐標(biāo)方程與曲線的參數(shù)方程;

II設(shè)點(diǎn)D在曲線上,曲線點(diǎn)D處的切線與直線垂直,確定點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù),).

(Ⅰ)當(dāng)時(shí),若曲線上存在兩點(diǎn)關(guān)于點(diǎn)成中心對(duì)稱,求直線的參數(shù)方程;

(Ⅱ)在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,極坐標(biāo)方程為的直線與曲線相交于兩點(diǎn),若,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且離心率為.

(1)求橢圓的方程;

(2)設(shè)點(diǎn)軸上的射影為點(diǎn),過點(diǎn)的直線與橢圓相交于, 兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)數(shù)列{an}前n項(xiàng)和為Sn , an>0(n=1,2,…),a1=a2=1,且對(duì)n≥2有(a1+a2+…+an)an=(a1+a2+…+an1)an+1 , 則S1S2+S2S3+S3S4+…+Sn1Sn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個(gè)人發(fā)展.某校的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)該校學(xué)生進(jìn)行“是否有明顯拖延癥”的調(diào)查中,隨機(jī)發(fā)放了110份問卷.對(duì)收回的100份有效問卷進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:

(1)按女生是否有明顯拖延癥進(jìn)行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機(jī)抽取3份,并記其中無(wú)明顯拖延癥的問卷的份數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(2)若在犯錯(cuò)誤的概率不超過的前提下認(rèn)為無(wú)明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請(qǐng)說(shuō)明理由.附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中.

獨(dú)立性檢驗(yàn)臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩個(gè)班級(jí)均為40人,進(jìn)行一門考試后,按學(xué)生考試成績(jī)及 格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.

(1) 根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表;

(2) 試判斷成績(jī)與班級(jí)是否有關(guān)?

參考公式:,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案