【題目】已知函數(shù),函數(shù).
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.
【答案】(1) 故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2) .
【解析】試題分析:
(Ⅰ)根據(jù)題意得到的解析式和定義域,求導后根據(jù)導函數(shù)的符號判斷單調(diào)性.(Ⅱ)分析題意可得對任意, 恒成立,構(gòu)造函數(shù),則有對任意, 恒成立,然后通過求函數(shù)的最值可得所求.
試題解析:
(I)由題意得, , ∴ .
當時, ,函數(shù)在上單調(diào)遞增;
當時,令,解得;令,解得.
故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
綜上,當時,函數(shù)在上單調(diào)遞增;
當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(II)由題意知.
,
當時,函數(shù)單調(diào)遞增.
不妨設(shè) ,又函數(shù)單調(diào)遞減,
所以原問題等價于:當時,對任意,不等式 恒成立,
即對任意, 恒成立.
記,
由題意得在上單調(diào)遞減.
所以對任意, 恒成立.
令, ,
則在上恒成立.
故,
而在上單調(diào)遞增,
所以函數(shù)在上的最大值為.
由,解得.
故實數(shù)的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的左,右焦點分別為,若雙曲線上存在點,使,則該雙曲線的離心率范圍為( )
A. (1,1) B. (1,1) C. (1,1] D. (1,1]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某工廠的一個車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:)落在各個小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 | |||||||
頻數(shù) | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;
(2)求這50件產(chǎn)品尺寸的樣本平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)產(chǎn)品的頻數(shù)分布,求出產(chǎn)品尺寸中位數(shù)的估計值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex-1-x-ax2.
(1)若a=0,求f(x)的單調(diào)區(qū)間;
(2)若當x≥0時,f(x)≥0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓: ,其左右焦點為、,過點的直線交橢圓于, 兩點,線段的中點為, 的中垂線與軸和軸分別交于、兩點,且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為, (為原點)的面積為,試問:是否存在直線,使得?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)當時,討論函數(shù)的單調(diào)性;
(2)當時,求證:函數(shù)有兩個不相等的零點, ,且.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)討論函數(shù)單調(diào)區(qū)間即解導數(shù)大于零求得增區(qū)間,導數(shù)小于零求得減區(qū)間(2)函數(shù)有兩個不同的零點,先分析函數(shù)單調(diào)性得零點所在的區(qū)間, 在上單調(diào)遞增,在上單調(diào)遞減.∵, , ,∴函數(shù)有兩個不同的零點,且一個在內(nèi),另一個在內(nèi).
不妨設(shè), ,要證,即證, 在上是增函數(shù),故,且,即證. 由,得 ,
令 , ,得在上單調(diào)遞減,∴,且∴, ,∴,即∴,故得證
解析:(1)當時, ,得,
令,得或.
當時, , ,所以,故在上單調(diào)遞減;
當時, , ,所以,故在上單調(diào)遞增;
當時, , ,所以,故在上單調(diào)遞減;
所以在, 上單調(diào)遞減,在上單調(diào)遞增.
(2)證明:由題意得,其中,
由得,由得,
所以在上單調(diào)遞增,在上單調(diào)遞減.
∵, , ,
∴函數(shù)有兩個不同的零點,且一個在內(nèi),另一個在內(nèi).
不妨設(shè), ,
要證,即證,
因為,且在上是增函數(shù),
所以,且,即證.
由,得 ,
令 , ,
則 .
∵,∴, ,
∴時, ,即在上單調(diào)遞減,
∴,且∴, ,
∴,即∴,故得證.
【題型】解答題
【結(jié)束】
22
【題目】已知曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,設(shè)直線的極坐標方程為.
(1)求曲線和直線的普通方程;
(2)設(shè)為曲線上任意一點,求點到直線的距離的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,,為橢圓的左、右焦點,為橢圓上的任意一點,的面積的最大值為1,、為橢圓上任意兩個關(guān)于軸對稱的點,直線與軸的交點為,直線交橢圓于另一點.
(1)求橢圓的標準方程;
(2)求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017安徽蚌埠一模)已知橢圓C:=1(a>b>0)的離心率為,F1,F2是橢圓的兩個焦點,P是橢圓上任意一點,且△PF1F2的周長是8+2.
(1)求橢圓C的方程;
(2)設(shè)圓T:(x-2)2+y2=,過橢圓的上頂點M作圓T的兩條切線交橢圓于E,F兩點,求直線EF的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生責任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機購為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com