【題目】設(shè)集合A={x∈R|2x﹣8=0},B={x∈R|x2﹣2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:由A中方程解得:x=4,即A={4};
將m=4代入B中的方程得:x2﹣10x+16=0,即(x﹣2)(x﹣8)=0,
解得:x=2或x=8,即B={2,8},
則A∪B={2,4,8}
(2)解:∵A∪B=A,∴BA或B=A,
∴當(dāng)B=時(shí),則有△=4(m+1)2﹣4m2<0,即m<﹣ ;
當(dāng)B=A時(shí),則△=4(m+1)2﹣4m2=0,且﹣ =4
解得:m不存在;
故m<﹣
【解析】(1)把m=4代入B中方程求出解,確定出B,求出A中方程的解確定出A,找出兩集合的并集即可;(2)由B為A的子集,分B為空集與B不為空集兩種情況求出m的范圍即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)影院的經(jīng)營經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過10元時(shí),票可全售出;當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個(gè)合適的票價(jià),需符合的基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;②電影院放一場電影的成本費(fèi)用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價(jià),用y(元)表示該影院放映一場的凈收入(除去成本費(fèi)用支出后的收入)問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價(jià)定為多少時(shí),放映一場的凈收人最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線關(guān)于直線對稱的直線為,直線與橢圓分別交于點(diǎn)、和、,記直線的斜率為.
(Ⅰ)求的值;
(Ⅱ)當(dāng)變化時(shí),試問直線是否恒過定點(diǎn)? 若恒過定點(diǎn),求出該定點(diǎn)坐標(biāo);若不恒過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知an=logn+1(n+2)(n∈N+),觀察下列運(yùn)算:a1a2=log23log34= =2;a1a2a3a4a5a6=log23log34…log67lg78= =3;….定義使a1a2a3…ak為整數(shù)的k(k∈N+)叫做希望數(shù),則在區(qū)間[1,2016]內(nèi)所有希望數(shù)的和為( )
A.1004
B.2026
C.4072
D.22016﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四組函數(shù),表示同一函數(shù)的是( )
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在寒假社會(huì)實(shí)踐活動(dòng)中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫()與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):
日期 | 1月11號(hào) | 1月12號(hào) | 1月13號(hào) | 1月14號(hào) | 1月15號(hào) |
平均氣溫() | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式;
(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報(bào)1月16號(hào)的白天平均氣溫為,請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種放射性元素,最初的質(zhì)量為500克,按每年10%衰減.
(1)求t年后,這種放射性元素的質(zhì)量w的表達(dá)式;
(2)用求出的函數(shù)表達(dá)式,求這種放射性元素的半衰期.(放射性元素的原子核有半數(shù)發(fā)生衰變時(shí)所需要的時(shí)間,叫“半衰期”)(lg0.5≈﹣0.3010,lg0.9≈﹣0.0458,結(jié)果精確到0.1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程.
在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,已知F1 , F2分別是橢圓E: 的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且 .
(1)求橢圓E的離心率;
(2)已知點(diǎn)D(1,0)為線段OF2的中點(diǎn),M 為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連接MF1并延長交橢圓E于點(diǎn)N,連接MD、ND并分別延長交橢圓E于點(diǎn)P、Q,連接PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2 , 試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com