考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:綜合題
分析:(1)將n=1代入T
n=
S
n-3n,求出a
1的值;
(2)根據(jù)當(dāng)n≥2時(shí),S
n=T
n-T
n-1求出
Sn=an-3仿寫作差得出數(shù)列{a
n}是以6為首項(xiàng),3為公比的等比數(shù)列,求出通項(xiàng)公式;
(3)當(dāng)n=1時(shí),
b1=<1;當(dāng)n≥2時(shí),b
n=
=
=<=
(-)通過裂項(xiàng)相消證出不等式.
解答:
解:(1)當(dāng)n=1時(shí),
T1=S1-3,
∵T
1=S
1=a
1,∴
a1=a1-3解得a
1=6
(2)當(dāng)n≥2時(shí),S
n=T
n-T
n-1=
S
n-3n
-[Sn-1-3(n-1)]=Sn-Sn-1-3∴
Sn=an-3①∴
Sn-1=an-1-3①由②-①得a
n=3a
n-1∴數(shù)列{a
n}是以6為首項(xiàng),3為公比的等比數(shù)列
,∴
an=6•3n-1=2•3n(3)當(dāng)n=1時(shí),
b1=<1當(dāng)n≥2時(shí),b
n=
=
=<=
=
[
(3n-1)-(3n-1-1) |
(3n-1)(3n-1-1) |
]
=
(-)∴b
1+b
2+…+b
n<b1+(-)+(-)+…+(-)<+(-)<1
點(diǎn)評:本題考查數(shù)列通項(xiàng)的求法、考查了放縮法證明不等式及裂項(xiàng)相消的數(shù)列求和的方法;屬于一道綜合題.