AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的任意一條與x軸不垂直的弦,O是橢圓的中心,e為橢圓的離心率,M為AB的中點,則KAB•KOM的值為( 。
A.e-1B.1-eC.e2-1D.1-e2
設(shè)直線為:y=kx+c
聯(lián)立橢圓和直線
y=kx+c
x2
a2
+
y2
b2
=1
消去y得
b2x2+a2(kx+c)2-a2b2=0,即 (b2+k2a2)x2+2a2kcx+a2(c2-b2)=0
所以:x1+x2=-
2a2kc
b2+k2a2

所以,M點的橫坐標(biāo)為:Mx=
1
2
(x1+x2)=-
a2kc
b2+k2a2

又:y1=kx1+c
y2=kx2+c
所以y1+y2=k(x1+x2)+2c=
2b2c
b2+k2a2

所以,點M的縱坐標(biāo)My=
1
2
(y1+y2)=
b2c
b2+k2a2

所以:Kom=
My
Mx
=
b2c
b2+k2a2
a2kc
b2+k2a2
=-
b.2
a2k

所以:
kAB•kOM=k×(-
b.2
a2k
)=-
b.2
a2
=e2-1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點A的坐標(biāo)為(3,1),點P在拋物線y2=4x上移動,F(xiàn)為拋物線的焦點,則|PF|+|PA|的最小值為( 。
A.3B.4C.5D.
5
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1,F(xiàn)2為橢圓x2+6y2=36的兩個焦點,P為橢圓上一點且PF1⊥PF2,則△F1PF2的面積是( 。
A.36B.12C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,F(xiàn)1、F2是橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的兩焦點,過點F2作AB⊥x軸交橢圓于A、B兩點,若△F1AB為等腰直角三角形,且∠AF1B=90°,則橢圓的離心率是( 。
A.
2
-1
B.
2
2
C.3-2
2
D.2-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線C的方程是
x2
m
+y2=1(m∈R
,且m≠0),給出下面三個命題:
①若曲線C表示圓,則m=1;
②若曲線C表示橢圓,則m的值越大,橢圓的離心率越大;
③若曲線C表示雙曲線,則m的值越大,雙曲線的離心率越;
其中正確的命題是______.(填寫所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點P是橢圓
x2
49
+
y2
24
=1
上一動點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,若|PF1|=6,則|OP|長為( 。
A.5B.10C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(文)橢圓具有這樣的光學(xué)性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.今有一個水平放置的橢圓形臺球盤,點A、B是它的焦點,長軸長為2a,焦距為2c,靜放在點A的小球(小球的半徑忽略不計)從點A沿直線出發(fā),經(jīng)橢圓壁反射后第一次回到點A時,小球經(jīng)過的路程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
5
+y2=1
的左右焦點為F1,F(xiàn)2,設(shè)P(x0,y0)為橢圓上一點,當(dāng)∠F1PF2為直角時,點P的橫坐標(biāo)x0=( 。
A.±
15
4
B.±
15
2
C.±
1
2
D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,過F2的直線l與橢圓C相交于A,B兩點,直線l的傾斜角為60°,F(xiàn)1到直線l的距離為2
3

(Ⅰ)求橢圓C的焦距;
(Ⅱ)如果
AF2
=2
F2B
,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案