(08年長郡中學(xué)一模文)(12分)如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面內(nèi)作菱形ABCD,邊長為1,∠BAD=60°,再在面的上方,分別以△與△為底面安裝上相同的正棱錐P-ABD與Q-CBD,∠APB=90°.
(Ⅰ)求證:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求點P到平面QBD的距離;
解析:(Ⅰ)由P-ABD,Q-CBD是相同正三棱錐,可知△PBD與
△QBD是全等等腰△.
取BD中點E,連結(jié)PE、QE,則BD⊥PE,BD⊥QE.故BD⊥平面PQE,
從而BD⊥PQ. …………………………4分
(Ⅱ)由(1)知∠PEQ是二面角P-BD-Q的平面角,作PM⊥平面,垂足為M,作QN⊥平面,垂足為N,則PM∥QN,M、N分別是正△ABD與正△BCD的中心,從而點A、M、E、N、C共線,PM與QN確定平面PACQ,且PMNQ為矩形.可得ME=NE=,PE=QE=,PQ=MN=,
∴ cos∠PEQ=,即二面角為.……………………8分
(Ⅲ) 由(1)知BD⊥平面PEQ.設(shè)點P到平面QBD的距離為h,則
∴ .
∴ . ∴ . ……………12分
科目:高中數(shù)學(xué) 來源: 題型:
(08年長郡中學(xué)一模理)(12分) 在北京友好運動會中,甲、乙、丙三名選手進行單循環(huán)賽(即每兩人比賽一場),共賽三場,每場比賽勝者得1分,輸者得0分,沒有平局;在每一場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為.
(Ⅰ)求甲獲得小組第一且丙獲得小組第二的概率;
(Ⅱ)求三人得分相同的概率;
(Ⅲ)設(shè)在該小組比賽中甲得分數(shù)為,求Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年長郡中學(xué)一模理)(12分)已知在多面體ABCDE中,AB⊥平面ACD,DE∥AB,AC = AD = CD = DE = 2,
F為CD的中點.
(Ⅰ)求證:AF⊥平面CDE;
(Ⅱ)求平面ABC和平面CDE所成的小于90°的二面角的大;
(Ⅲ)求點A到平面BCD的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年長郡中學(xué)一模理)(13分)某中學(xué)有教職員工500人,為了開展迎2008奧運全民健身活動,增強教職員工體質(zhì),學(xué)校工會鼓勵大家積極參加晨練與晚練,每天清晨與晚上定時開放運動場、健身房和乒乓球室,約有30%的教職員工堅持每天鍛煉. 據(jù)調(diào)查統(tǒng)計,每次去戶外鍛煉的人有10%下次去室內(nèi)鍛煉,而在室內(nèi)鍛煉的人有20%下次去戶外鍛煉. 請問,隨著時間的推移,去戶外鍛煉的人數(shù)能否趨于穩(wěn)定?穩(wěn)定在多少人左右?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年長郡中學(xué)一模文)(12分)如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面內(nèi)作菱形ABCD,邊長為1,∠BAD=60°,再在面的上方,分別以△與△為底面安裝上相同的正棱錐P-ABD與Q-CBD,∠APB=90°.
(Ⅰ)求證:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求點P到平面QBD的距離;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年長郡中學(xué)一模文)(13分)已知函數(shù),
①若在區(qū)間上單調(diào)遞減,求實數(shù)的取值范圍。
②若過點可作函數(shù)圖象的三條切線,求實數(shù)的取值范圍。
③設(shè)點,,記點,求證:在區(qū)間內(nèi)至少有一實數(shù),使得函數(shù)圖象在處的切線平行于直線。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com