15.在正四面體P-ABC中,點(diǎn)M是棱PC的中點(diǎn),點(diǎn)N是線段AB上一動(dòng)點(diǎn),且$\overrightarrow{AN}=λ\overrightarrow{AB}$,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng)$\frac{1}{3}≤λ≤\frac{2}{3}$時(shí),則cosα的取值范圍是[$\frac{5\sqrt{19}}{38}$,$\frac{7\sqrt{19}}{38}$].

分析 設(shè)P到平面ABC的射影為點(diǎn)O,取BC中點(diǎn)D,以O(shè)為原點(diǎn),在平面ABC中,以過O作DB的平行線為x軸,以O(shè)D為y軸,以O(shè)P為z軸,建立空間直角坐標(biāo)系,利用向量法能求出cosα的取值范圍.

解答 解:設(shè)P到平面ABC的射影為點(diǎn)O,取BC中點(diǎn)D,
以O(shè)為原點(diǎn),在平面ABC中,以過O作DB的平行線為x軸,
以O(shè)D為y軸,以O(shè)P為z軸,建立空間直角坐標(biāo)系,如圖,
設(shè)正四面體P-ABC的棱長為4$\sqrt{3}$,
則A(0,-4,0),B(2$\sqrt{3}$,2,0),C(-2$\sqrt{3}$,2,2$\sqrt{2}$),P(0,0,4$\sqrt{2}$),M(-$\sqrt{3}$,1,2$\sqrt{2}$),
由$\overrightarrow{AN}=λ\overrightarrow{AB}$,得N($2\sqrt{3}λ,6λ-4,0$),
∴$\overrightarrow{NM}$=(-$\sqrt{3}-2\sqrt{3}λ$,5-6λ,2$\sqrt{2}$),$\overrightarrow{AC}$=(-2$\sqrt{3}$,6,0),
∵異面直線 NM 與 AC 所成角為α,$\frac{1}{3}≤λ≤\frac{2}{3}$,
∴cosα=$\frac{|\overrightarrow{NM}•\overrightarrow{AC}|}{|\overrightarrow{NM}|•|\overrightarrow{AC}|}$=$\frac{3-2λ}{2\sqrt{4{λ}^{2}-4λ+3}}$,設(shè)3-2λ=t,則$\frac{5}{3}≤t≤\frac{7}{3}$,
∴cosα=$\frac{1}{2}$$\sqrt{\frac{{t}^{2}}{{t}^{2}-4t+6}}$=$\frac{1}{2\sqrt{6(\frac{1}{t})^{2}-4•\frac{1}{t}+1}}$,
∵$\frac{1}{3}<\frac{3}{7}≤\frac{1}{t}≤\frac{3}{5}$,
∴$\frac{5\sqrt{19}}{38}≤cosα≤\frac{7\sqrt{19}}{38}$.
∴cosα的取值范圍是[$\frac{5\sqrt{19}}{38}$,$\frac{7\sqrt{19}}{38}$].
故答案為:[$\frac{5\sqrt{19}}{38}$,$\frac{7\sqrt{19}}{38}$].

點(diǎn)評 本題考查異面直線所成角的余弦值的取值范圍的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若α是第四象限角,cosα=$\frac{12}{13}$,則sinα=( 。
A.-$\frac{5}{13}$B.$\frac{5}{13}$C.-$\frac{5}{12}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1+ln(x+1)}{x}$
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)判定函數(shù)f(x)在(-1,0)的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若當(dāng)x>0時(shí),f(x)>$\frac{k}{x+1}$恒成立,求正整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在復(fù)平面上,一個(gè)正方形的三個(gè)頂點(diǎn)對應(yīng)的復(fù)數(shù)分別是-1-2i、2-i、0,那么這個(gè)正方形的第四個(gè)頂點(diǎn)對應(yīng)的復(fù)數(shù)為( 。
A.3+iB.3-iC.1-3iD.-1+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,已知AB=2,AC=3,$\overrightarrow{AB}$•$\overrightarrow{AC}$=4,D為△ABC所在平面內(nèi)一點(diǎn),且滿足$\overrightarrow{AD}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$.
(1)求|$\overrightarrow{AD}$|;
(2)cos∠BDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|<π),在同一周期內(nèi),當(dāng)x=$\frac{π}{12}$時(shí),f(x)取得最大值3;當(dāng)x=$\frac{7}{12}$π時(shí),f(x)取得最小值-3.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若x∈[-$\frac{π}{3}$,$\frac{π}{6}$]時(shí),方程2f(x)+1-m=0有兩個(gè)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合A={1,2,3,4},集合B={3,4,5},則A∩B={3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)化ρ=cosθ-2sinθ為直角坐標(biāo)形式并說明曲線的形狀;
(2)化曲線F的直角坐標(biāo)方程:x2+y2-5$\sqrt{{x}^{2}+{y}^{2}}$-5x=0為極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12..已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,an+1-Sn=2(n∈N*) 則an=2n

查看答案和解析>>

同步練習(xí)冊答案