【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了冰雪答題王冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,,,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

3)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為優(yōu)秀,比賽成績(jī)低于80分為非優(yōu)秀.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計(jì)

男生

40

女生

50

合計(jì)

100

參考公式及數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1274 3)見(jiàn)解析,沒(méi)有的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)

【解析】

1)根據(jù)各小矩形面積之和為1,即可解方程求出的值;

2)由頻率分布直方圖可知,平均成績(jī)?yōu)楦餍【匦蔚拿娣e與各底邊中點(diǎn)值的乘積之和,即可求出;

3)根據(jù)題意填寫(xiě)列聯(lián)表,計(jì)算的觀測(cè)值,對(duì)照臨界值即可得出結(jié)論.

1)由題可得

解得

2)平均成績(jī)?yōu)椋?/span>

3)由(2)知,在抽取的名學(xué)生中,比賽成績(jī)優(yōu)秀的有人,由此可得完整的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

合計(jì)

男生

女生

合計(jì)

的觀測(cè)值,

∴沒(méi)有的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若不等式解集為,求實(shí)數(shù)的值;

(2)在(1)的條件下,若不等式解集非空,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正三棱柱ABC=A1B1C1的各棱長(zhǎng)都是4,EBC的中點(diǎn),動(dòng)點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.

1)當(dāng)CF=1時(shí),求證:EF⊥A1C;

2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,的角平分線所在直線為,邊的高線所在直線為邊的高線所在直線為,

1)求直線的方程;

2)求直線的方程;

3)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中

(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;

(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,平面,底面為菱形,,E中點(diǎn),M的中點(diǎn),F上的動(dòng)點(diǎn).

1)求證:平面平面;

2)直線與平面所成角的正切值為,當(dāng)F中點(diǎn)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線過(guò)原點(diǎn)且傾斜角為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.在平面直角坐標(biāo)系中,曲線與曲線關(guān)于直線對(duì)稱(chēng).

(Ⅰ)求曲線的極坐標(biāo)方程;

(Ⅱ)若直線過(guò)原點(diǎn)且傾斜角為,設(shè)直線與曲線相交于兩點(diǎn),直線與曲線相交于,兩點(diǎn),當(dāng)變化時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直三棱柱中,,,,分別是,,的中點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),且

(1)證明:無(wú)論取何值,總有平面

(2)是否存在點(diǎn),使得平面與平面的夾角為?若存在,試確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案