下列命題:
①函數(shù)y=
x-2
x+2
的定義域是(-∞,-2]∪[2,+∞);
②若函數(shù)y=f(x)在R上遞增,則函數(shù)y=f(x)的零點至多有一個;
③若f(x)是冪函數(shù),且滿足
f(4)
f(2)
=3,則f(
1
2
)=
1
3

④式子(a-1)-
1
2
有意義,則a的范圍是[1,+∞);
⑤任意一條垂直于x軸的直線與函數(shù)y=f(x)的圖象有且只有一個交點.
其中正確命題的序號是
②③
②③
分析:①求出y=
x-2
x+2
的定義域;
②用反證法說明命題②正確;
③設出冪函數(shù)y=xα,由
f(4)
f(2)
得f(
1
2
)的值;
④求出使(a-1)-
1
2
有意義a的取值范圍;
⑤舉反例說明命題⑤錯誤;
解答:①∵
x-2
x+2
≥0,∴x≥2或x<-2,∴y=
x-2
x+2
的定義域是(-∞,-2)∪[2,+∞),∴命題①錯誤;
②假設y=f(x)的零點有兩個,設為x1≠x2,則f(x1)=f(x2)=0,這與y=f(x)在R上遞增矛盾,∴假設錯誤∴命題②正確;
③∵f(x)是冪函數(shù),設y=xα,由
f(4)
f(2)
=
4α
2α
=2α=3,得f(
1
2
)=(
1
2
)
α
=
1
2α
=
1
3
,命題③正確;
(a-1)-
1
2
=
1
a-1
有意義,則a-1>0,∴a>1,∴命題則④錯誤;
⑤∵直線x=0與函數(shù)y=
1
x
的圖象無交點,∴命題⑤錯誤;
故答案為:②③
點評:本題通過命題真假的判定,考查了函數(shù)的性質(zhì)與應用,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=sin(
2
-2x)
是偶函數(shù);
②函數(shù)y=sin(x+
π
4
)
在閉區(qū)間[-
π
2
,
π
2
]
上是增函數(shù);
③直線x=
π
8
是函數(shù)y=sin(2x+
4
)
圖象的一條對稱軸;
④若cosx=-
1
3
,x∈(0,2π)
,則x=arcos(-
1
3
)或π+arcos(-
1
3

其中正確的命題的序號是:
①③
①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=lg
x2+1|x|
(x≠0,x∈R)
有下列命題:
①函數(shù)y=f(x)的圖象關于y軸對稱;
②在區(qū)間(-∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)f(x)的最小值為lg2;
④在區(qū)間(1,∞)上,函數(shù)f(x)是增函數(shù).
其中正確命題序號為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列命題:
①函數(shù)y=sin(-2x+
π
3
)
的單調(diào)增區(qū)間是[-kπ-
π
12
,-kπ+
12
](k∈Z)

②要得到函數(shù)y=cos(x-
π
6
)
的圖象,需把函數(shù)y=sinx的圖象上所有點向左平行移動
π
3
個單位長度.
③已知函數(shù)f(x)=2cos2x-2acosx+3,當a≤-2時,函數(shù)f(x)的最小值為g(a)=5+2a.
④y=sinwx(w>0)在[0,1]上至少出現(xiàn)了100次最小值,則w≥
399
2
π

其中正確命題的序號是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關于x=2對稱;
②函數(shù)y=f(x)導函數(shù)為y=f′(x),若f′(x0)=0,則f(x0)必為函數(shù)y=f(x)的極值;
③函數(shù)y=sinx在一象限單調(diào)遞增;
④y=tanx在其定義域內(nèi)為單調(diào)增函數(shù).
其中正確的命題序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=sin2x-cos2x有下列命題:
①函數(shù)y=f(x)的周期為π;                
②直線x=
π
4
是y=f(x)圖象的一條對稱軸;
點(
π
8
,0)
是y=f(x)圖象的一個對稱中心;
(-
π
8
,
8
)
是函數(shù)y=f(x)的一個單調(diào)遞減區(qū)間.
其中真命題的序號是
①③
①③

查看答案和解析>>

同步練習冊答案