【題目】已知f(x)= 是(﹣∞,+∞)上的減函數(shù),那么a的取值范圍是

【答案】 ≤a<
【解析】解:∵當x≥1時,y=logax單調遞減,
∴0<a<1;
而當x<1時,f(x)=(3a﹣1)x+4a單調遞減,
∴a< ;
又函數(shù)在其定義域內單調遞減,
故當x=1時,(3a﹣1)x+4a≥logax,得a≥ ,
綜上可知, ≤a<
所以答案是: ≤a<
【考點精析】解答此題的關鍵在于理解函數(shù)單調性的性質的相關知識,掌握函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集,以及對對數(shù)函數(shù)的單調性與特殊點的理解,了解過定點(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數(shù);0>a>1時在(0,+∞)上是減函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知 中, 分別為兩腰上的高、求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log3(ax2+3x+4)
(1)若f(1)<2,求a的取值范圍
(2)若a=1,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)存在兩個零點.

1)求實數(shù)的取值范圍;

2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“ALS冰桶挑戰(zhàn)賽”是一項社交網絡上發(fā)起的籌款活動,活動規(guī)定:被邀請者要么在24小時內接受挑戰(zhàn),要么選擇為慈善機構捐款(不接受挑戰(zhàn)),并且不能重復參加該活動.若被邀請者接受挑戰(zhàn),則他需在網絡上發(fā)布自己被冰水澆遍全身的視頻內容,然后便可以邀請另外3個人參與這項活動.假設每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.
附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828


(1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中恰有2個人接受挑戰(zhàn)的概率是多少?
(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關,某調查機構進行了隨機抽樣調查,調查得到如下 列聯(lián)表:

接受挑戰(zhàn)

不接受挑戰(zhàn)

合計

男性

50

10

60

女性

25

15

40

合計

75

25

100

根據表中數(shù)據,是否有99%的把握認為“冰桶挑戰(zhàn)賽與受邀者的性別有關”?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)在(1)的范圍內求y=g(x)﹣f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是定義在(﹣1,+∞)內的增函數(shù),且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a﹣1)+2
求:
(1)f(9)的值,
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側面底面,且, , , 的中點.

(Ⅰ)求證: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=loga(2﹣ax)是[0,1]上的減函數(shù),則a的取值范圍為 (  。

A. (0,1) B. (1,2) C. (0,2) D. (2,+∞)

查看答案和解析>>

同步練習冊答案