(Ⅰ)
(Ⅱ) 證明略
解:(Ⅰ)由
得
兩式相減得
即
∴
即
…………(3分)
故數(shù)列{
}是從第2項起,以
為首項,2為公比的等比數(shù)列
又
∴
故
又
不滿足
∴
………(6分)
(Ⅱ) 證明:由
得
則
, …………(7分)
∴
+
、
從而
+
② ……(9分)
①-②得:
故
…(11分)
∴
………(12分)
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
己知數(shù)列
滿足:
,
(1) 求a2,a3;
(2) 設
,求證
是等比數(shù)列,并求其通項公式;
(3) 在(2)條件下,求數(shù)列
前100項中的所有偶數(shù)項的和S。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分
)
已知等差數(shù)列
的公差為
, 且
,
(1)求數(shù)列
的通項公式
與前
項和
;
(2)將數(shù)列
的前
項抽去其中一項后,剩下三項按原來順序恰為等比數(shù)列
的前3項,記
的前
項和為
, 若存在
, 使對任意
總有
恒成立, 求實數(shù)
的取值范圍.K
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
已知數(shù)列
是各項均不為
的等差數(shù)列,公差為
,
為其前
項和,且滿足
,
.數(shù)列
滿足
,
為數(shù)列
的前
n項和.
(1)求
、
和
;
(2)若對任意的
,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù)
,使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
將正偶數(shù)排列如下表,其中第
行第
個數(shù)表示
(i
N
*,j
N
*),例如
,若
,則
▲ .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
(1)寫出
的遞推關系式,并求出
的通項公式;
(2)若
試比較
大小
并證明
查看答案和解析>>