如圖,已知直線()與拋物線:和圓:都相切,是的焦點.
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動點,以為切點作拋物線的切線,直線交軸于點,以、為鄰邊作平行四邊形,證明:點在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為, 直線與軸交點為,連接交拋物線于、兩點,求△的面積的取值范圍.
【解析】第一問中利用圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去)
設(shè)與拋物線的相切點為,又,得,.
代入直線方程得:,∴ 所以,
第二問中,由(Ⅰ)知拋物線方程為,焦點. ………………(2分)
設(shè),由(Ⅰ)知以為切點的切線的方程為.
令,得切線交軸的點坐標為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因為是定點,所以點在定直線
第三問中,設(shè)直線,代入得結(jié)合韋達定理得到。
解:(Ⅰ)由已知,圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去). …………………(2分)
設(shè)與拋物線的相切點為,又,得,.
代入直線方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為,焦點. ………………(2分)
設(shè),由(Ⅰ)知以為切點的切線的方程為.
令,得切線交軸的點坐標為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因為是定點,所以點在定直線上.…(2分)
(Ⅲ)設(shè)直線,代入得, ……)得, …………………………… (2分)
,
.△的面積范圍是
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)如圖,已知直線l:與拋物線C:交于A,B兩點,為坐標原點,。
(Ⅰ)求直線l和拋物線C的方程;(Ⅱ)拋物線上一動點P從A到B運動時,求△ABP面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分15分)如圖,已知直線()與拋物線:和圓:都相切,是的焦點.
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動點,以為切點作拋物線
的切線,直線交軸于點,以、為
鄰邊作平行四邊形,證明:點在一條
定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,
直線與軸交點為,連接交拋物線
于、兩點,求△的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分15分)如圖,已知直線()與拋物線:和圓:都相切,是的焦點.
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動點,以為切點作拋物線
的切線,直線交軸于點,以、為
鄰邊作平行四邊形,證明:點在一條
定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,
直線與軸交點為,連接交拋物線
于、兩點,求△的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分15分)如圖,已知直線()與拋物線:和圓:都相切,是的焦點.
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動點,以為切點作拋物線
的切線,直線交軸于點,以、為
鄰邊作平行四邊形,證明:點在一條
定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,
直線與軸交點為,連接交拋物線
于、兩點,求△的面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com