在直角坐標系xOy中,圓C的參數(shù)方程為參數(shù)).以O(shè)為極點,軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求圓C的極坐標方程;
(Ⅱ)直線的極坐標方程是,射線與圓C的交點為O,P,與直線的交點為Q,求線段PQ的長.

(Ⅰ);(Ⅱ)2.

解析試題分析:(Ⅰ)利用代換可得;(Ⅱ)依題意分別求出的極坐標,利用,則求解.
試題解析:(Ⅰ)圓的普通方程是,又,
所以圓的極坐標方程是.                           (5分)
(Ⅱ)設(shè)為點的極坐標,則有 解得.  
設(shè)為點的極坐標,則有  解得
由于,所以,所以線段的長為2.     (10分)
考點:圓的參數(shù)方程,直線的極坐標方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-)=.
(1)求圓O和直線l的直角坐標方程.
(2)當(dāng)θ∈(0,π)時,求直線l與圓O公共點的一個極坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C的極坐標方程為,直線的參數(shù)方程為( t為參數(shù),0≤).
(Ⅰ)把曲線C的極坐標方程化為直角坐標方程,并說明曲線C的形狀;
(Ⅱ)若直線經(jīng)過點(1,0),求直線被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系中,圓的參數(shù)方程為參數(shù)).以為極點,軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求圓的極坐標方程;
(Ⅱ)直線的極坐標方程是,射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系的軸的正半軸重合.直線的參數(shù)方程是(為參數(shù)),曲線C的極坐標方程為
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設(shè)直線與曲線C相交于M,N兩點,求M,N兩點間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標系中,已知圓的圓心,半徑.
(Ⅰ)求圓的極坐標方程;
(Ⅱ)若,直線的參數(shù)方程為為參數(shù)),直線交圓兩點,求弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為
(I)判斷直線與圓C的位置關(guān)系;
(Ⅱ)若點P(x,y)在圓C上,求x +y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的極坐標方程為,點為其左,右焦點,直線的參數(shù)方程為(為參數(shù),).
(Ⅰ)求直線和曲線C的普通方程;
(Ⅱ)求點到直線的距離之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
在直角坐標系xoy中,以o為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為,M,N分別為C與x軸,y軸的交點
(1)寫出C的直角坐標方程,并求出M,N的極坐標;
(2)設(shè)MN的中點為P,求直線OP的極坐標方程.

查看答案和解析>>

同步練習(xí)冊答案