分析 (1)根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零,結(jié)合f(1)=g(-1)-2列出關(guān)于a,b的方程組,求出a,b,然后再利用導(dǎo)數(shù)研究導(dǎo)數(shù)研究單調(diào)區(qū)間;
(2)①將a=0代入,研究極值的符號(hào),即可求出求b的取值范圍,
②結(jié)合①的結(jié)論,通過(guò)適當(dāng)?shù)淖冃,利用放縮法和基本不等式即可證明.
解答 解:(1)由已知得f$′(x)=ax+\frac{1}{x}$,(x>0),
所以$f′(\frac{\sqrt{2}}{2})=\frac{\sqrt{2}}{2}a+\sqrt{2}=0$,所以a=-2.
由f′(1)=g(-1)-2,
得a+1=b-2,
所以b=1.
所以h(x)=-x2+lnx+x,(x>0).
則$h′(x)=-2x+\frac{1}{x}+1=\frac{2(x+\frac{1}{2})(x-1)}{-x}$,(x>0),
由h′(x)>0得0<x<1,h′(x)<0得x>1.
所以h(x)的減區(qū)間為(1,+∞),增區(qū)間為(0,1).
(2)①由已知h(x)=lnx+bx,(x>0).
所以h$′(x)=\frac{1}{x}+b$,(x>0),
當(dāng)b≥0時(shí),顯然h′(x)>0恒成立,此時(shí)函數(shù)h(x)在定義域內(nèi)遞增,h(x)至多有一個(gè)零點(diǎn),不合題意.
當(dāng)b<0時(shí),令h′(x)=0得x=$-\frac{1}$>0,令h′(x)>0得$0<x<-\frac{1}$;令h′(x)<0得$x>-\frac{1}$.
所以h(x)極大=h($-\frac{1}$)=-ln(-b)-1>0,解得$-\frac{1}{e}<b<0$.
且x→0時(shí),lnx<0,x→+∞時(shí),lnx>0.
所以當(dāng)$b∈(-\frac{1}{e},0)$時(shí),h(x)有兩個(gè)零點(diǎn).
②證明:由題意得$\left\{\begin{array}{l}{ln{x}_{1}+b{x}_{1}=0}\\{ln{x}_{2}+b{x}_{2}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{{e}^{-b{x}_{1}}={x}_{1}①}\\{{e}^{-b{x}_{2}}={x}_{2}②}\end{array}\right.$,
①×②得${e}^{-b({x}_{1}+{x}_{2})}={x}_{1}{x}_{2}$.
因?yàn)閤1,x2>0,
所以-b(x1+x2)>0,
所以${e}^{-b({x}_{1}+{x}_{2})}={x}_{1}{x}_{2}>1$,
因?yàn)?<-b<$\frac{1}{e}$,
所以e-b<1,
所以x1x2>${e}^{-2b\sqrt{{x}_{1}{x}_{2}}}$>${e}^{2\sqrt{{x}_{1}{x}_{2}}}$>e2,
所以$\frac{{{x}_{1}x}_{2}}{{e}^{2}}$>1.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)和函數(shù)的單調(diào)性和極值的關(guān)系,以及函數(shù)的零點(diǎn)存在定理和不等式的證明,培養(yǎng)了學(xué)生的運(yùn)算能力,化歸能力,分類討論的能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∧q | B. | p∨(¬q) | C. | (¬p)∧q | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -2 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1-\sqrt{5}}{4}$,0) | B. | ($\frac{1-\sqrt{5}}{4}$,$\frac{\sqrt{5}-2}{2}$) | C. | [$\frac{9-9\sqrt{5}}{32}$,$\frac{\sqrt{5}-2}{2}$) | D. | [$\frac{9-9\sqrt{5}}{32}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,-1) | B. | (-1,0) | C. | (1,2) | D. | (3,6) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com