向平面區(qū)域{(x,y)|0≤x≤
2
,0≤y≤1}內(nèi)隨機(jī)投入一點(diǎn),則該點(diǎn)落在曲線y=
x3(0≤x≤1)
2-x2
(1≤x≤
2
)
下方的概率為
 
考點(diǎn):幾何概型,簡(jiǎn)單線性規(guī)劃
專題:概率與統(tǒng)計(jì)
分析:求出對(duì)應(yīng)區(qū)域的面積,利用幾何概型的概率公式即可得到結(jié)論.
解答: 解:平面區(qū)域{(x,y)|0≤x≤
2
,0≤y≤1}對(duì)應(yīng)區(qū)域?yàn)殚L(zhǎng)方形OABC,對(duì)應(yīng)的面積S=1×
2
=
2
,
曲線y=
x3(0≤x≤1)
2-x2
(1≤x≤
2
)
下方對(duì)應(yīng)的區(qū)域如圖:
三角形ODF為等腰直角三角形,面積S △ODF=
1
2
×1×1=
1
2
,
扇形DOC的面積S=
45
360
×π×(
2
)2=
π
4

則曲邊圖形CDF的面積S=
π
4
-
1
2
,
曲邊ODF的面積S=
1
0
x3dx
=
1
4
x4
|
1
0
=
1
4
,
故陰影部分的面積S=
π
4
-
1
2
+
1
4
=
π
4
-
1
4
,
則所求的概率P=
π
4
-
1
4
2
=
2
2
π
4
-
1
4
),
故答案為:
2
2
π
4
-
1
4
點(diǎn)評(píng):本題主要考查幾何概型的概率計(jì)算以及曲邊圖形的面積的求法,根據(jù)條件求出對(duì)應(yīng)的圖形的面積是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z的實(shí)部為1,且|z|=2,則復(fù)數(shù)z的虛部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1+tan40°)(1+tan5°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x-
1
logx+12
-1=0的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=(3-i)2(i為虛數(shù)單位),則復(fù)數(shù)z的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線C:x2=2y的焦點(diǎn)F的直線l交拋物線C于A、B兩點(diǎn),若拋物線C在點(diǎn)B處的切線斜率為1,則線段|AF|
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(x-1)2+a
x-1
(a為非零常數(shù)),則f(x)的圖象滿足(  )
A、關(guān)于點(diǎn)(1,0)對(duì)稱
B、關(guān)于點(diǎn)(1,1)對(duì)稱
C、關(guān)于原點(diǎn)對(duì)稱
D、關(guān)于直線x=1軸對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第三象限角,且sin(π-α)=-
3
5
,則tanα的值為( 。
A、-
4
3
B、
4
3
C、-
3
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于實(shí)數(shù)a和b,定義運(yùn)算a*b,運(yùn)算原理如圖所示,則式子(
1
4
)-
1
2
*lne3的值為( 。
A、6B、7C、8D、9

查看答案和解析>>

同步練習(xí)冊(cè)答案