已知函數(shù)f(x)=(sin2x+cos2x)2-2sin22x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函數(shù)y=g(x)的圖象是由y=f(x)的圖象向右平移個(gè)單位長度得到的,當(dāng)x∈[0,]時(shí),求y=g(x)的最大值和最小值.
【答案】分析:(Ⅰ)將函數(shù)解析式第一項(xiàng)利用完全平方公式展開,再利用二倍角的正弦函數(shù)公式及同角三角函數(shù)間的基本關(guān)系化簡,第二項(xiàng)利用二倍角的余弦函數(shù)公式化簡,整理后利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),找出ω的值,代入周期公式即可求出函數(shù)的最小正周期;
(Ⅱ)由第一問確定的f(x)解析式,根據(jù)平移規(guī)律“左加右減”表示出g(x),利用x的范圍求出這個(gè)角的范圍,根據(jù)正弦函數(shù)的圖象與性質(zhì)即可求出g(x)的最大值與最小值.
解答:解:(Ⅰ)∵f(x)=(sin2x+cos2x)2-2sin22x
=sin22x+2sin2xcos2x+cos22x-(1-cos4x)
=1+sin4x-1+cos4x=sin4x+cos4x=sin(4x+),
∴函數(shù)f(x)的最小正周期為=;
(Ⅱ)依題意,y=g(x)=sin[4(x-)+]=sin(4x-),
∵0≤x≤,∴-≤4x-
當(dāng)4x-=,即x=時(shí),g(x)取最大值;
當(dāng)4x-=-,即x=0時(shí),g(x)取最小值-1.
點(diǎn)評(píng):此題考查了二倍角的正弦、余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,平移規(guī)律,以及正弦函數(shù)的定義域與值域,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案