【題目】在三棱錐D-ABC中,,且,,M,N分別是棱BC,CD的中點,下面結(jié)論正確的是( )
A.B.平面ABD
C.三棱錐A-CMN的體積的最大值為D.AD與BC一定不垂直
【答案】ABD
【解析】
根據(jù)題意畫出三棱錐D-ABC,取中點,連接:對于A,根據(jù)等腰三角形性質(zhì)及線面垂直判定定理可證明平面,從而即可判斷A;對于B,由中位線定理及線面平行判定定理即可證明;對于C,當平面平面時,三棱錐A-CMN的體積最大,由線段關(guān)系及三棱錐體積公式即可求解;對于D,假設,通過線面垂直判定定理可得矛盾,從而說明假設不成立,即可說明原命題成立即可.
根據(jù)題意,畫出三棱錐D-ABC如下圖所示,取中點,連接:
對于A,因為,且,,
所以為等腰直角三角形,
則且,
則平面,
所以,即A正確;
對于B,因為M,N分別是棱BC,CD的中點,
由中位線定理可得,而平面,平面,
所以平面,即B正確;
對于C,當平面平面時,三棱錐A-CMN的體積最大,
則最大值為,即C錯誤;
對于D,假設,由,且,
所以平面,則,
又因為,且,
所以平面,由平面,則,
由題意可知,因而不能成立,因而假設錯誤,所以D正確;
綜上可知,正確的為ABD,
故選:ABD.
科目:高中數(shù)學 來源: 題型:
【題目】垃圾分類,是指按一定規(guī)定或標準將垃圾分類儲存、分類投放和分類搬運,從而轉(zhuǎn)變成公共資源的一系列活動的總稱.分類的目的是提高垃圾的資源價值和經(jīng)濟價值,力爭物盡其用.2019年6月25日,生活垃圾分類制度入法.到2020年底,先行先試的46個重點城市,要基本建成垃圾分類處理系統(tǒng);其他地級城市實現(xiàn)公共機構(gòu)生活垃圾分類全覆蓋.某機構(gòu)欲組建一個有關(guān)“垃圾分類”相關(guān)事宜的項目組,對各個地區(qū)“垃圾分類”的處理模式進行相關(guān)報道.該機構(gòu)從600名員工中進行篩選,篩選方法:每位員工測試,,三項工作,3項測試中至少2項測試“不合格”的員工,將被認定為“暫定”,有且只有一項測試“不合格”的員工將再測試,兩項,如果這兩項中有1項以上(含1項)測試“不合格”,將也被認定為“暫定”,每位員工測試,,三項工作相互獨立,每一項測試“不合格”的概率均為.
(1)記某位員工被認定為“暫定”的概率為,求;
(2)每位員工不需要重新測試的費用為90元,需要重新測試的總費用為150元,除測試費用外,其他費用總計為1萬元,若該機構(gòu)的預算為8萬元,且該600名員工全部參與測試,問上述方案是否會超過預算?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xex-alnx(無理數(shù)e=2.718…).
(1)若f(x)在(0,1)單調(diào)遞減,求實數(shù)a的取值范圍;
(2)當a=-1時,設g(x)=x(f(x)-xex)-x3+x2-b,若函數(shù)g(x)存在零點,求實數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓P恒過定點,且與直線相切.
(Ⅰ)求動圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,,,點在線段上,.把沿翻折至的位置,平面,連結(jié),點在線段上,,如圖2.
(1)證明:平面;
(2)當三棱錐的體積最大時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別為橢圓的左、右焦點,為該橢圓的一條垂直于軸的動弦,直線與軸交于點,直線與直線的交點為.
(1)證明:點恒在橢圓上.
(2)設直線與橢圓只有一個公共點,直線與直線相交于點,在平面內(nèi)是否存在定點,使得恒成立?若存在,求出該點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別為橢圓的左、右焦點,為該橢圓的一條垂直于軸的動弦,直線與軸交于點,直線與直線的交點為.
(1)證明:點恒在橢圓上.
(2)設直線與橢圓只有一個公共點,直線與直線相交于點,在平面內(nèi)是否存在定點,使得恒成立?若存在,求出該點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+m|+|2x-1|.
(1)當m=-1時,求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】分形幾何是美籍法國數(shù)學家芒德勃羅在20世紀70年代創(chuàng)立的一門數(shù)學新分支,其中的“謝爾賓斯基”圖形的作法是:先作一個正三角形,挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的每個小正三角形中又挖去一個“中心三角形”.按上述方法無限連續(xù)地作下去直到無窮,最終所得的極限圖形稱為“謝爾賓斯基”圖形(如圖所示),按上述操作7次后,“謝爾賓斯基”圖形中的小正三角形的個數(shù)為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com