定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-5,-4]上是減函數(shù),若A、B是銳角三角形的兩個內(nèi)角,則( )
A.f(sinA)>f(sinB)
B.f(cosA)<f(cosB)
C.f(sinB)<f(cosA)
D.f(sinA)>f(cosB)
【答案】
分析:首先根據(jù)A、B是銳角三角形的兩個內(nèi)角,結(jié)合y=cosx在區(qū)間(0,
)上是減函數(shù),證出sinA>cosB.然后根據(jù)偶函數(shù)f(x)滿足f(x+1)=-f(x),可得函數(shù)f(x)是周期為2的函數(shù),且f(x)在[0,1]上是增函數(shù).最后根據(jù)f(x)在[0,1]上是增函數(shù),結(jié)合銳角三角形中sinA>cosB,得到f(sinA)>f(cosB).
解答:解:∵A、B是銳角三角形的兩個內(nèi)角
∴A+B>
,可得A>
-B,
∵y=cosx在區(qū)間(0,
)上是減函數(shù),
>A>
-B>0,
∴sinA>sin(
-B)=cosB,即銳角三角形的兩個內(nèi)角A、B是滿足sinA>cosB,
∵函數(shù)f(x)滿足f(x+1)=-f(x),
∴f(x+2)=-f(x+1)=-[-f(x)]=f(x),可得函數(shù)f(x)是周期為2的函數(shù).
∵f(x)在[-5,-4]上是減函數(shù),
∴f(x)在[-1,0]上也是減函數(shù),
再結(jié)合函數(shù)f(x)是定義在R上的偶函數(shù),可得f(x)在[0,1]上是增函數(shù).
∵銳角三角形的兩個內(nèi)角A、B是滿足sinA>cosB,且sinB、cosA∈[0,1]
∴f(sinA)>f(cosB).
故選D
點評:本題以函數(shù)的單調(diào)性與奇偶性為例,考查了銳角三角形的性質(zhì)、函數(shù)的定義域與簡單性質(zhì)等知識點,屬于中檔題.