【題目】如圖,在四棱錐中,四邊形為梯形,且ABDC,,平面平面.
(Ⅰ)證明:平面平面;
(Ⅱ)若,,求二面角的余弦值.
【答案】(Ⅰ)見解析(Ⅱ)
【解析】
(Ⅰ)先利用面面垂直的性質(zhì)定理可得平面,進而得到平面,再根據(jù)面面垂直的判定定理得證;
(Ⅱ)建立空間直角坐標系,求出兩平面的法向量,利用向量公式求解即可.
解:(Ⅰ)證明:∵平面平面,平面平面,,在平面內(nèi),
∴平面,
又∵,
∴平面,
而在平面內(nèi),
∴平面平面;
(Ⅱ)作于,則平面,過作交于,
如圖,以為坐標原點,,,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系,
設(shè),則,,,,
故,,,
設(shè)平面的一個法向量為,則,
則可取,
設(shè)平面的一個法向量為,則,
則可取,
∴,
由圖可知,二面角的平面角為銳角,故二面角的平面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形,沿對角線將折起,使得點在平面內(nèi)的射影恰好落在邊上.
(Ⅰ)求證:平面平面;
(Ⅱ)當時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若=(,),=(,),設(shè).
(1)求函數(shù)在[0,π]上的單調(diào)減區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,若,,求sinB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為,左、右焦點分別為、,上頂點為,右頂點為,且、、成等比數(shù)列.
(1)求橢圓的離心率;
(2)判斷的形狀,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇跡之一,其中較為著名的是胡夫金字塔.令人吃驚的并不僅僅是胡夫金字塔的雄壯身姿,還有發(fā)生在胡夫金字塔上的數(shù)字“巧合”.如胡夫金字塔的底部周長如果除以其高度的兩倍,得到的商為3.14159,這就是圓周率較為精確的近似值.金字塔底部形為正方形,整個塔形為正四棱錐,經(jīng)古代能工巧匠建設(shè)完成后,底座邊長大約230米.因年久風(fēng)化,頂端剝落10米,則胡夫金字塔現(xiàn)高大約為( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在算法中“”和“”分別表示取商和取余數(shù).為了驗證三位數(shù)卡普雷卡爾“數(shù)字黑洞”(即輸入一個無重復(fù)數(shù)字的三位數(shù),經(jīng)過如圖的有限次的重排求差計算,結(jié)果都為495).小明輸入,則輸出的( )
A.3B.4C.5D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,且過點.
(1)求C的方程;
(2)若直線l與C有且只有一個公共點,l與圓x2+y2=6交于A,B兩點,直線OA,OB的斜率分別記為k1,k2.試判斷k1k2是否為定值,若是,求出該定值;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的有( )
①用相關(guān)指數(shù)來刻畫回歸效果,越小,說明模型的擬合效果越好;
②若一組數(shù)據(jù)8,12,x,11,9的平均數(shù)是10,則其方差是2;
③回歸直線一定過樣本點的中心();
④若相關(guān)系數(shù),則兩個變量之間線性關(guān)系性強.
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com