過點(diǎn)Q(2,4)引直線與圓x2+y2=1交于R,S兩點(diǎn),那么弦RS的中點(diǎn)P的軌跡為( )
A.圓(x+1)2+(y+2)2=5
B.圓x2+y2+2x+4y=0的一段弧
C.圓x2+y2-2x-4y=0的一段弧
D.圓(x-1)2+(y-2)2=5
【答案】分析:判斷Q與圓的位置關(guān)系,畫出圖象,轉(zhuǎn)化為圓的方程的一部分得到選項(xiàng).
解答:解:因?yàn)辄c(diǎn)Q(2,4)在圓x2+y2=1的外部,如圖:
所以過點(diǎn)Q(2,4)引直線與圓x2+y2=1交于R,S兩點(diǎn),
斜率存在,是一段區(qū)間,因?yàn)橄襌S的中點(diǎn)P,所以O(shè)P⊥RS,
即△OPQ是直角三角形,OQ是定值,OQ==,
OQ的中點(diǎn)為(1,2),圓的半徑為:
所以所求的軌跡方程為:(x-1)2+(y-2)2==5,
即x2+y2-2x-4y=0.因?yàn)樾甭蚀嬖,是一段區(qū)間,
所求軌跡是圓的一部分.
故選C.
點(diǎn)評:本題考查曲線軌跡方程的求法,考查轉(zhuǎn)化思想計(jì)算能力,注意圖象的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動點(diǎn)M(x,y)滿足到點(diǎn)(1,0)的距離比到直線x=-2的距離小1.
(1)求曲線C的方程;
(2)過點(diǎn)P(2,4)的直線與曲線C交于A、B兩點(diǎn),在線段AB上取點(diǎn)Q,滿足|
AP
|•|
QB
|=|
AQ
|•|
PB
|,證明:
(ⅰ)
1
|
PA
|
+
1
|
PB
|
=
2
|
PQ
|
;(ⅱ)點(diǎn)Q總在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)Q(2,4)引直線與圓x2+y2=1交于R,S兩點(diǎn),那么弦RS的中點(diǎn)P的軌跡為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過點(diǎn)Q(2,4)引直線與圓x2+y2=1交于R,S兩點(diǎn),那么弦RS的中點(diǎn)P的軌跡為


  1. A.
    圓(x+1)2+(y+2)2=5
  2. B.
    圓x2+y2+2x+4y=0的一段弧
  3. C.
    圓x2+y2-2x-4y=0的一段弧
  4. D.
    圓(x-1)2+(y-2)2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省杭州二中高三(上)1月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知曲線C上的動點(diǎn)M(x,y)滿足到點(diǎn)(1,0)的距離比到直線x=-2的距離小1.
(1)求曲線C的方程;
(2)過點(diǎn)P(2,4)的直線與曲線C交于A、B兩點(diǎn),在線段AB上取點(diǎn)Q,滿足|•||•||,證明:
(。;(ⅱ)點(diǎn)Q總在某定直線上.

查看答案和解析>>

同步練習(xí)冊答案