A. | (0,2] | B. | [$\frac{1}{2}$,+∞) | C. | [$\frac{1}{2}$,2] | D. | [$\frac{1}{2}$,2]∪[4,+∞) |
分析 若區(qū)間[1,2]為函數(shù)f(x)=|2x-t|的“不動(dòng)區(qū)間”,則函數(shù)f(x)=|2x-t|和函數(shù)F(x)=|2-x-t|在[1,2]上單調(diào)性相同,則(2x-t)(2-x-t)≤0在[1,2]上恒成立,進(jìn)而得到答案.
解答 解:∵函數(shù)y=f(x)與y=F(x)的圖象關(guān)于y軸對(duì)稱,
∴F(x)=f(-x)=|2-x-t|,
∵區(qū)間[1,2]為函數(shù)f(x)=|2x-t|的“不動(dòng)區(qū)間”,
∴函數(shù)f(x)=|2x-t|和函數(shù)F(x)=|2-x-t|在[1,2]上單調(diào)性相同,
∵y=2x-t和函數(shù)y=2-x-t的單調(diào)性相反,
∴(2x-t)(2-x-t)≤0在[1,2]上恒成立,
即1-t(2x+2-x)+t2≤0在[1,2]上恒成立,
即2-x≤t≤2x在[1,2]上恒成立,
即$\frac{1}{2}$≤t≤2,
故選:C
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)恒成立問題,指數(shù)函數(shù)的圖象和性質(zhì),正確理解不動(dòng)區(qū)間的定義,是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 0 | C. | 14 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1種 | B. | 2種 | C. | 3種 | D. | 4種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2米/秒 | B. | 3米/秒 | C. | 4米/秒 | D. | 5米/秒 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,4) | B. | $[\frac{5}{2},4)$ | C. | $(1,\frac{5}{2}]$ | D. | $[\frac{5}{2},\frac{8}{3}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com