已知函數(shù)
(1)若方程內(nèi)有兩個(gè)不等的實(shí)根,求實(shí)數(shù)m的取值范圍;(e為自然對(duì)數(shù)的底數(shù))
(2)如果函數(shù)的圖象與x軸交于兩點(diǎn)、且.求證:(其中正常數(shù)).
(1)(2)
解析試題分析:(1)方程內(nèi)有兩個(gè)不等的實(shí)根,可轉(zhuǎn)化為函數(shù)的圖象與 有兩個(gè)不同的交點(diǎn),可以利用導(dǎo)數(shù)研究函數(shù)在 上的單調(diào)性與極值并結(jié)合邊界值來確定實(shí)數(shù)m的取值范圍;
(2)由函數(shù)的圖象與x軸交于兩點(diǎn)、知方程
有兩根
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5b/e/psntt1.png" style="vertical-align:middle;" /> ,
所以
只需證明:在上恒成立即可.
試題解析:(1)由,
求導(dǎo)數(shù)得到:
,故在有唯一的極值點(diǎn)
,且知
故上有兩個(gè)不等實(shí)根需滿足:
故所求m的取值范圍為. (6分)
(2)又有兩個(gè)實(shí)根
則
兩式相減得到:
于是
,故
要證:,只需證:
只需證:
令,則
只需證明:在上恒成立.
又則
于是由可知.故知
上為增函數(shù),則
從而可知,即(*)式成立,從而原不等式得證. (14分)
考點(diǎn):1、導(dǎo)數(shù)在研究函數(shù)性質(zhì)中的應(yīng)用;2、等價(jià)轉(zhuǎn)化與數(shù)形結(jié)合的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性,并說明理由;
(2)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在時(shí)取得極小值.
(1)求實(shí)數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ae/c/tcyos1.png" style="vertical-align:middle;" />?若存在,求出,的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),函數(shù)
⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;
⑵若,函數(shù)在上的最小值是2 ,求的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)的定義域是,其中常數(shù).
(1)若,求的過原點(diǎn)的切線方程.
(2)當(dāng)時(shí),求最大實(shí)數(shù),使不等式對(duì)恒成立.
(3)證明當(dāng)時(shí),對(duì)任何,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,.
(1)若,試判斷并用定義證明函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求函數(shù)的最大值的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)..
(1)設(shè)曲線處的切線為,點(diǎn)(1,0)到直線l的距離為,求a的值;
(2)若對(duì)于任意實(shí)數(shù)恒成立,試確定的取值范圍;
(3)當(dāng)是否存在實(shí)數(shù)處的切線與y軸垂直?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com